федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ФИЗИКИ	
кафедра ФИЗИКИ	

Рабочая программа по дисциплине

численные методы спектроскопии

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

03.03.02 «Физика»

Направленность (профиль):

Физика

Квалификация:

Бакалавр

Форма обучения

Очная

Согласовано Руководитель ОПОП «Физика»		Утверждаю Председатель УМС <u>Галмай</u> И.И. Палкин
1.1	Бобровский А.П.	Рекомендована решением Учебно-методического совета <u>19 споле 2</u> 018 г., протокол № <u>4</u>
		Рассмотрена и утверждена на заседании кафедры
		Авторы-разработчики:

Программа дисциплины «Численные методы спектроскопии». Для высших учебных заведений. – СПб.: Изд. РГГМУ, 2018-17 с.

Составитель: Логинов А. В., доктор физ.-мат. наук, профессор кафедры физики РГГМУ.

Ответственный редактор: Бобровский А.П. заведующий кафедрой физики РГГМУ.

Рецензент: Тупицын И.И., доктор физ.-мат. наук, профессор кафедры квантовой механики СПбГУ

[©] Логинов А.В., 2018 г.

[©] Российский государственный гидрометеорологический университет (РГГМУ), 2018.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Целью дисциплины «Численные методы спектроскопии» является подготовка студентов, владеющих углубленными теоретическими знаниями о явлениях, протекающих в атомах и ионах, необходимых для освоения курсов профессиональных дисциплин, и всей последующей деятельности после университета.

Основная задача дисциплины «Численные методы спектроскопии» - ознакомление с теоретическими подходами к описанию спектров атомов и ионов, моделями и способами вычисления основных спектроскопических характеристик, анализом полученных данных.

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина "Численные методы спектроскопии" (Б1.В.ОД.17) для направления 03.03.02 — «Физика» относится к вариативным обязательным дисциплинам цикла Б1 и изучается в восьмом семестре, поэтому при изучении данной дисциплины обучающиеся должны освоить разделы дисциплин «Математика» «Общая физика», «Химия», «Физическая химия», «Квантовая теория».

Дисциплина «Численные методы спектроскопии» изучается параллельно с дисциплиной «Теория переноса электромагнитных волн в газах» и используется при написании выпускной квалификационной работы бакалавра.

ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Численные методы спектроскопии» формирует компетенции ОПК-1, ОПК-3, ПК-1, ПК-2.

ОПК-1: способ	ность использовать в профессиональной деятельности базовые
естественнонауч	ные знания, включая знания о предмете и объектах изучения,
методах исслед	ования, современных концепциях, достижениях и ограничениях
естественных н	аук (прежде всего химии, биологии, экологии, наук о Земле и
человеке)	
Уровень	Признаки проявления
освоения	признаки проявления
Продвинутый	
2	Цели и задачи исследования состояния окружающей среды, которые
Знает:	могут быть достигнуты с помощью спектроскопических методов
37	Использовать спектроскопические данные для анализа состояния
Умеет:	окружающей среды
D	Навыками работы с научной отечественной и зарубежной информацией
Владеет:	о спектроскопических исследованиях
ОПК-3:Способн	ость использовать базовые теоретические знания фундаментальных
	и теоретической физики для решения профессиональных задач
Уровень	Призидии продражина
освоения	Признаки проявления
Продвинутый	
7	Основы атомной физики и квантово-механические модели атомов и
Знает:	ионов
Viscomi	Составить уравнение Шредингера для простейших атомных систем и
Умеет:	иметь представление о способе его решения
D	Навыками трактовки полученных спектроскопических данных для этих
Владеет:	систем
ПК-1: способно	сть использовать специализированные знания в области физики для
	освоения профильных физических дисциплин
Уровень	Признаки проявления
освоения	призники проивления
Минимальный	
Знает:	Основные представления о спектре атома, единицы измерения атомных величин
Умеет:	Сформулировать задачу спектрального исследования
Владеет:	Навыками использования специальной научной литературы по
Бладеет.	спектроскопии
Базовый	
Знает:	Основные внутриатомные взаимодействия и соответствующие им
энаст.	операторы
Умеет:	Пользоваться специальными величинами, принятыми для описания
у меет.	атомных спектров
Владеет:	Пониманием смысла спектроскопических величин и понятий
Продвинутый	-
Знает:	Основные модели описания спектров, границы их применимости
Умеет:	Учитывать особенности применения квантовых подходов к вычислению
J MICCI.	интывать особенности применении квантовых подходов к вычислению

	спектроскопических характеристик
	Представлением об основных взаимодействиях в электронных
Владеет:	оболочках атомов и способностью оценивать их вклад в спектр
	конкретного атома или иона

ПК-2: способность проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта

1 1	1 0
Уровень освоения	Признаки проявления
Продвинутый	
Знает	Основные методы расчета спектров атомов и ионов
Умеет	Пользоваться современным программным обеспечением для расчетов спектров конкретных атомов и ионов, существенных для процессов в природной среде
Владеет	Навыками оценки достоверности полученных результатов

В результате освоения компетенций в рамках дисциплины «Численные методы спектроскопии» обучающийся должен

знать:

- цели и задачи спектроскопического исследования состояния окружающей среды;
- основы атомной физики и квантово-механические модели атомов и ионов;
- основные представления о спектре атома;
- операторы основных внутриатомных взаимодействий, их определение, смысл, единицы измерения атомных величин
- основные модели описания спектров, границы их применимости;
- основные методы расчетов спектров атомов и ионов;
- фундаментальную роль атомной спектроскопии в развитии, физической науки в целом и квантовой физики, в частности.

уметь:

- использовать спектроскопические данные для анализа состояния окружающей среды;
- решать уравнение Шредингера для простейших атомных систем;
- сформулировать задачу спектрального исследования;
- пользоваться специальными величинами, принятыми в атомной физике;
- учитывать особенности применения квантовых подходов к вычислению спектроскопических характеристик;
- пользоваться современным программным обеспечением для расчетов спектров конкретных атомов и ионов, существенных для процессов в природной среде

владеть:

- навыками работы с научной отечественной и зарубежной информацией о спектроскопических исследованиях;
- навыками трактовки полученных спектроскопических данных для простейших атомных систем;
- навыками использования специальной научной литературы по спектроскопии;
- способностью истолковывать смысл спектроскопических величин и понятий;
- способностью объяснять явления и эффекты в электронных оболочках с позиций квантовой физики и указать, какими законами описывается данное явление или эффект;

5

• навыками оценки достоверности результатов численных расчетов.

Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания

Этап	Основные признаки проявленияи компетенции (дескрипторное описание уровня)						
(уровень)	1.	2.	3.	4.	5.		
освоения							
компетенции							
		слабо ориентируется	Способен выделить основные идеи	Владеет основными навыками работы с	Способен дать собственную		
	не владеет	•	текста, работает с критической	источниками и критической литературой	критическую оценку изучаемого		
		•	литературой		материала		
Уровень 1	не умеет	не выделяет	Способен показать основную идею в	Способен представить ключевую проблему	Может соотнести основные идеи с		
(минимальный)	The ymeet	основные идеи	развитии	в ее связи с другими процессами	современными проблемами		
		допускает грубые	Знает основные рабочие категории,	Понимает специфику основных рабочих	Способен выделить характерный		
	не знает	оппери	однако не ориентируется в их	категорий	авторский подход		
			специфике				
			Владеет приемами поиска и	Свободно излагает материал, однако не	Способен сравнивать концепции,		
	не владеет	*	систематизации, но не способен	демонстрирует навыков сравнения	аргументированно излагает		
			свободно изложить материал	основных идей и концепций	материал		
Уровень 2	не умеет		Выделяет конкретную проблему, однако излишне упрощает ее	Способен выделить и сравнить концепции, но испытывает сложности с их	Аргументированно проводит сравнение концепций по заданной		
(базовый)		идеи, но не видит проблем	однако излишне упрощает ее	практической привязкой	проблематике		
			Может изложить основные рабочие	Знает основные отличия концепций в	Способен выделить специфику		
	не знает	допускает много	категории	заданной проблемной области	концепций в заданной проблемной		
	ne snaer	ошибок	na tor opini	sugarmon inposite.mion costactif	области		
			В общих чертах понимает основную	Видит источники современных проблем в	Способен грамотно обосновать		
			идею, однако плохо связывает ее с	заданной области анализа, владеет	собственную позицию		
	не владеет	1 12	существующей проблематикой	подходами к их решению	относительно решения		
		содержании	-yy	r, s,,	современных проблем в заданной		
		.			области		
			Может понять практическое	Выявляет основания заданной области	Свободно ориентируется в		
Уровень 3			назначение основной идеи, но	анализа, понимает ее практическую	заданной области анализа.		
(продвинутый)	не умеет	, ,	-	ценность, однако испытывает затруднения	Понимает ее основания и умеет		
(продвинутыи)	не умеет	в развитии	затрудняется выявить ее основания				
		в развитии		в описании сложных объектов анализа	выделить практическое значение		
					заданной области		
		gony chact omnown	Способен изложить основное	Знает основное содержание	Может дать критический анализ		
	не знает	-	содержание современных научных	современных научных идей в рабочей	современным проблемам в		
	110 011001		идей в рабочей области анализа	области анализа, способен их	заданной области анализа		
		анализа		сопоставить			

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Очная форма обучения 2015, 2016, 2017, 2018 годы набора

Вид учебной дисциплины	Всего часов	Семестр
Общая трудоёмкость дисциплины	108	8
Аудиторные занятия	36	8
Лекции	24	8
Практические работы	12	8
Самостоятельная работа (СР)- всего	72	8
В том числе подготовка к сдаче зачета	-	
Вид итогового контроля	зачет	8

4.1. Структура дисциплины

№	Раздел и тема	Виды учебной работы, в т.ч. самостоятельна я работа студентов, час.		т.ч. :льна а	Формы	ктивной и гой форме,	уемые енции	
Л2		дисциплины	Лекции	Лабораторн ые работы	Самостоятел ьная работа	текущего контроля успеваемости	Занятия в активной и интерактивной форме, час.	Формируемые компетенции
1	Понятие о спектре	4	-	12	Собеседование, тестовое задание	-	ОПК-1 ОПК-3 ПК-1 ПК-2	
2	Классификация спектров одноэлектронных атомов	3	2	10	Собеседование, проверка подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание	2	ОПК-1 ОПК-3 ПК-1 ПК-2	
3	Классификация спектров	3	2	10	Собеседование, проверка	2	ОПК-1 ОПК-3	

	многоэлектронных атомов				подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание		ПК-1 ПК-2
4	Сферическая симметрия, разделение переменных	4	2	10	Собеседование, проверка подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание	2	ОПК-1 ОПК-3 ПК-1 ПК-2
5	Промежуточная схема связи	3	4	10	Собеседование, проверка подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание	4	ОПК-1 ОПК-3 ПК-1 ПК-2
6	Расчет радиальных интегралов	3	2	10	Собеседование, проверка подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание	2	ОПК-1 ОПК-3 ПК-1 ПК-2
7	Двухатомные молекулы, колебательное уравнение	4		10	Собеседование, проверка подготовки к лабораторной работе, отчет по лабораторной работе, тестовое задание		ОПК-1 ОПК-3 ПК-1 ПК-2
	ИТОГО	24	12	72		12	

4.2. Содержание разделов дисциплины

Раздел 1 Понятие о спектре Уровни энергии. Спектроскопические переходы. Длина волны спектральной линии. Единицы измерения: атомные единицы, ридберги, обратные сантиметры, электронвольты, соотношения между ними.

Интенсивность спектральной линии. Сила линии. Вероятность перехода, единицы измерения, практические формулы. Время жизни уровня.

Раздел 2 Классификация спектров одноэлектронных атомов

Квантовые числа: главное, орбитальное, спин, полный момент.

Раздел 3

Классификация спектров многоэлектронных атомов

Понятие об электронных конфигурациях, принцип Паули. Основные и возбужденные конфигурации. Сложение угловых моментов. Различные схемы сложения угловых моментов, связь между ними.

Раздел 4 Сферическая симметрия, разделение переменных

Матричная форма уравнения Шредингера. Расчет матричных элементов операторов. Угловые части, радиальные интегралы. Операторы взаимодействий — электростатическое, спин-орбитальное. Тензорная форма операторов. Расчет матричных элементов. Операторы перехода. Сила линии. Расчет сил линий в различных схемах сложения моментов.

Раздел 5 Промежуточная схема связи

Наложение конфигураций. Расчет межконфигурационных матричных элементов. Метод наименьших квадратов. Параметры, эффективные взаимодействия.

Раздел 6

Расчет радиальных интегралов

Метод Хартри-Фока. Численные схемы реализации метода Хартри-Фока. Метод Нумерова.

Раздел 7

Двухатомные молекулы, колебательное уравнение

Межатомные потенциалы. Метод Нумерова. Узлы волновой функции. Интегрирование в одну сторону. Волновые функции дискретного и сплошного спектров.

4.3. Семинарские, практические, лабораторные занятия, их содержание

4.3.1 Лабораторные работы

№ п/п № Тематика лабораторных Форма Формир	уемы
--	------

	раздела дисципл	занятий	проведения	е компетенции
	ины			компетенции
1	2	Выбор объекта для расчета спектральных характеристик по литературным данным	Лабораторная работа	ОПК-1 ОПК-3 ПК-1 ПК-2
2	2-3	Выбор схемы сложения угловых моментов с целью классификации спектра выбранного объекта, вычисление коэффициентов перехода	Лабораторная	ОПК-1 ОПК-3 ПК-1 ПК-2
3	4	Расчет матричных элементов операторов электростатического и спин-орбитального взаимодействий, расчет сил линий	работа	ОПК-1 ОПК-3 ПК-1 ПК-2
4	5	Расчет матричных элементов эффективных взаимодействий, расчет межконфигурационных матричных элементов	Лабораторная работа	ОПК-1 ОПК-3 ПК-1 ПК-2
5	3	Реализация метода наименьших квадратов для выбранного объекта	Лабораторная работа	ОПК-1 ОПК-3 ПК-1 ПК-2
6	6	Расчет радиальных интегралов методом Хартри-Фока	Лабораторная работа	ОПК-1 ОПК-3 ПК-1 ПК-2

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ И ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

5.1. Текущий контроль

Текущий контроль осуществляется в ходе изучения каждого раздела в сроки, предусмотренные графиком учебного процесса на текущий год. Система, сроки и виды контроля доводятся до сведения каждого студента в начале занятий по дисциплине. В рамках текущего контроля оцениваются все виды работы студента, предусмотренные учебной программой по дисциплине.

Формами текущего контроля являются:

- собеседование (опрос на лекциях) по пройденному материалу;
- проверка степени подготовленности к лабораторным работам (допуск к лабораторным работам);
- -проверка отчётов по выполнению лабораторных работ, собеседование по теоретической части лабораторных работ (защита лабораторных работ);
 - -проверка тестовых заданий;

Текущий контроль проводится в период аудиторной и самостоятельной работы студентов в установленные сроки по расписанию.

а) Примерный перечень вопросов для собеседования и опроса на лекциях

- 1. Сериальные закономерности в спектре атома водорода.
- 2. Комбинационные закономерности в спектре атома водорода.
- 3. Гипотеза квантов излучения.
- 4. Характерные размеры атома, атомная единица длины.
- 5. Спектр энергий электрона, атомная единица энергии.
- 6. Волновое уравнение как способ математического описания атомных спектров.
- 7. Оператор энергии одноэлектронного атома.
- 8. Волновые функции одноэлектронного атома.
- 9. Формальный смысл квантовых чисел.
- 10. Возможное физическое толкование квантовых чисел.
- 11. Принцип Паули.
- 12. Заполнение электронных оболочек.
- 13. Электронные конфигурации.
- 14. Основное и возбужденные состояния.
- 15. Расщепление конфигурации на термы как следствие электростатического взаимодействия электронов.
- 16. Сложение угловых моментов как способ математического описания системы термов.
- 17. Тонкая структура спектров как следствие спин-орбитального взаимодействия.
- 18. Матричная форма волнового уравнения как один из способов его решения.
- 19. Матричные элементы операторов.
- 20. Разложение матричных элементов операторов на угловые и радиальные части как следствие сферической симметрии атома.
- 21. Тензорная форма операторов взаимодействий.
- 22. Вычисление угловых частей.
- 23. Различные схемы сложения угловых моментов как следствие соотношения различных взаимодействий в электронной оболочке.
- 24. Наложение конфигураций как способ решения волнового уравнения.
- 25. Наложение конфигураций как уточненное приближение.
- 26. Полуэмпирическое приближение.
- 27. Метод наименьших квадратов.
- 28. Радиальные интегралы как параметры.
- 29. *Ab initio* методы.
- 30. Вариационный принцип.
- 31. Метод Хартри-Фока.
- 32. Метод Нумерова.
- 33. Электронные термы двухатомных молекул.
- 34. Колебательное уравнение.
- 35. Квантовое колебательное число и узлы волновой функции.
- 36. Метод Нумерова применительно к колебательному уравнению.
- 37. Метод «стрельбы» интегрирование в одну сторону.
- 38. Дискретный и сплошной спектры.

б) Примерный перечень вопросов тестового задания

Раздел 1

Частоты линий излучения в спектре атома водорода:

- 1. никак не связаны между собой;
- 2. могут быть представлены в виде сумм частот других линий.

Раздел 2

Энергия электрона в одноэлектронном атоме зависит:

- 1. от одного квантового числа;
- 2. от трех квантовых чисел;
- 3. от пяти квантовых чисел.

Раздел 3

Расщепление конфигурации на термы есть следствие:

- 1. электростатического взаимодействия электронов между собой;
- 2. электростатического взаимодействия электронов с ядром;
- 3. спин-орбитального взаимодействия.

Раздел 4

Разложение матричных элементов операторов на угловые и радиальные части есть следствие:

- 1. сферической симметрии;
- 2. цилиндрической симметрии;
- 3. формальный математический прием.

Раздел 5

Лучше всего отвечает физическому смыслу термин:

- 1. взаимодействие конфигураций;
- 2. наложение конфигураций;
- 3. перемешивание конфигураций.

Раздел 6

Волновое уравнение является дифференциальным уравнением:

- 1. первого порядка;
- 2. второго порядка;
- 3. третьего порядка.

Раздел 7

Физический смысл понятия электронный терм это:

- 1. кинетическая энергия электронов;
- 2. кинетическая энергия ядер;
- 3. потенциальная энергия положительно заряженных ядер;
- 4. потенциальная энергия электронов.

5.2. Методические указания по организации самостоятельной работы

Самостоятельная работа студентов является составной частью учебной работы и имеет целью закрепление и углубления полученных знаний и навыков, поиск и

приобретение новых знаний, а также выполнение учебных заданий, подготовку к предстоящим занятиям, тестовым заданиям, зачету.

Самостоятельная работа предусматривает, как правило, выполнение вычислительных работ, графических заданий к лабораторным работам, подготовку к опросу на лекциях.

Работа с литературой предусматривает самостоятельное изучение теоретического материала, подготовку к лабораторным работам.

5.3. Промежуточный контроль: Зачет после освоения дисциплины в конце 8 семестра. К зачету допускаются студенты, выполнившие все требования учебной программы и сдавшие все лабораторные работы и тестовые задания.

Перечень вопросов к зачету

- 1. Сериальные закономерности в спектре атома водорода.
- 2. Комбинационные закономерности в спектре атома водорода.
- 3. Гипотеза квантов излучения.
- 4. Характерные размеры атома, атомная единица длины.
- 5. Спектр энергий электрона, атомная единица энергии.
- 6. Волновое уравнение как способ математического описания атомных спектров.
- 1. Оператор энергии одноэлектронного атома.
- 2. Волновые функции одноэлектронного атома.
- 3. Формальный смысл квантовых чисел.
- 4. Возможное физическое толкование квантовых чисел.
- 5. Принцип Паули.
- 6. Заполнение электронных оболочек.
- 7. Электронные конфигурации.
- 8. Основное и возбужденные состояния.
- 9. Расщепление конфигурации на термы как следствие электростатического взаимодействия электронов.
- 10. Сложение угловых моментов как способ математического описания системы термов.
- 11. Тонкая структура спектров как следствие спин-орбитального взаимодействия.
- 12. Матричная форма волнового уравнения как один из способов его решения.
- 13. Матричные элементы операторов.
- 14. Разложение матричных элементов операторов на угловые и радиальные части как следствие сферической симметрии атома.
- 15. Тензорная форма операторов взаимодействий.
- 16. Вычисление угловых частей.
- 17. Различные схемы сложения угловых моментов как следствие соотношения различных взаимодействий в электронной оболочке.
- 24. Наложение конфигураций как способ решения волнового уравнения.
- 25. Наложение конфигураций как уточненное приближение.
- 26. Полуэмпирическое приближение.
- 27. Метод наименьших квадратов.
- 28. Радиальные интегралы как параметры.
- 29. Ab initio метолы.
- 30. Вариационный принцип.
- 31. Метод Хартри-Фока.
- 32. Метод Нумерова.
- 33. Электронные термы двухатомных молекул.
- 34. Колебательное уравнение.

- 35. Квантовое колебательное число и узлы волновой функции.
- 36. Метод Нумерова применительно к колебательному уравнению.
- 37. Метод «стрельбы» интегрирование в одну сторону.
- 38. Дискретный и сплошной спектры.

Образцы билетов для проведения зачета

Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

03.03.02 – Физика (академический бакалавриат)

Билет № 1 Дисциплина «ЧИСЛЕННЫЕ МЕТОДЫ СПЕКТРОСКОПИИ»

- 1. Атомная система единиц.
- 2. Промежуточная схема связи.
- 3. Термы двухэлектронного атома.

Экзаменатор
Заведующий кафедрой физики
Протокол заседания кафедры № г.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

- а) основная литература
 - 1. Фриш С.Э. Оптические спектры атомов. 2-е изд. Изд-во «Лань», 2010,640 с.
 - 2. Бейман Б.Ф. Применение теории групп в ядерной спектроскопии. М.: ГИФМЛ, 1961. 226 с.
 - 3. Юцис А.П., Левинсон И.Л., Ванагас . Математический аппарат теории момента количества движения. Вильнюс, 1960, 243 с.
 - 4. Пивоваров С.С. Физические основы теории оптической и рентгеновской спектроскопии. Изд-во Санкт-Петербургского государственного университета, 2016, 64 с.
 - 5. Никитин А.А., Рудзикас З.Б. Основы теории спектров атомов и ионов. М.: Наука, 1983. 320 с.
 - 6. Джадд Б., Вайборн Б. Теория сложных атомных спектров. М.: Мир, 1973. 296 с.
 - 7. Хартри Д. Расчеты атомных структур. М.: ИЛ, 1960. 271 с.

б) дополнительная литература

- 1. Ландау Л.Д, Лифшиц Е. М. Квантовая механика. Нерелятивистская теория. М.: Γ ИФМЛ, 1963. 704 с.
- 2. Борн М. Атомная физика. М.: Мир, 1965. 483 с.

в) программное обеспечение и Интернет-ресурсы

1. NIST Atomic Database (ver. 5.2). [Online]. Available: http://physics.nist.gov/asd[2015, October 8].

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Вид учебных занятий	Организация деятельности студента
Лекции	В ходе лекционных занятий необходимо вести конспектирование учебного материала. Обращать внимание на формулировки физических законов, процессов, явлений. Подробно записывать математические выводы формул. Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений.
Лабораторная работа	Лабораторные занятия имеют целью практическое освоение студентами научно-теоретических положений изучаемой дисциплины, овладение ими техникой экспериментальных (расчетных) исследований и анализа полученных результатов, привитие навыков работы с лабораторным оборудованием, контрольно-измерительными приборами и вычислительной техникой. По выполнению лабораторной работы студенты представляют отчет и защищают его. Защищенные отчеты студентов хранятся на кафедре до завершения изучения дисциплины.
Внеаудиторная работа	представляет собой вид занятий, которые каждый студент организует и планирует самостоятельно. Самостоятельная работа студентов включает: — самостоятельное изучение разделов дисциплины; — подготовка к выполнению лабораторных работ, выполнение вычислительных и графических заданий к лабораторным работам; — подготовка к сдаче зачета.
Подготовка к зачету	Зачет служит формой проверки выполнения студентами лабораторных работ, усвоения лекционного материала. Зачет имеет целью проверить и оценить уровень теоретических знаний, степень

	овладения	практическими	умениями	И	навыками	В	объеме
	требований учебных программ.						
	Подготовка	к зачету предп	олагает изу	чен	ие конспек	тов	лекций,
	рекомендуе	мой литературы	и других	И	сточников,	пон	вторение
материалов лабораторных занятий.							

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)

			Перечень
№ п/п		Образовательные и	программного
	Тема (раздел) дисциплины	информационные	обеспечения и
		технологии	информационных
			справочных систем
		Лекции,	Microsoft Windows
		собеседование,	Microsoft Office:Word,
	Понятие о спектре	самостоятельная	Excel
1		работа студентов	PowerPoint; ЭБС PΓΓΜУ
			https://bibliotech.esstu.ru
			Химический Интернет-
			портал. URL:
			www.chemport.ru.
		Лекции,	Microsoft Windows
		лабораторные	Microsoft Office:Word,
	Классификация спектров одноэлектронных атомов	занятия, отчет по	Excel
		лабораторной	PowerPoint;
2		работе	ЭБС РГГМУ
		собеседование,,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-
		работа студентов	портал. URL:
			www.chemport.ru.
		Лекции,	Microsoft Windows
	Классификация спектров многоэлектронных атомов	лабораторные	Microsoft Office:Word,
		занятия, отчет по	Excel
		лабораторной	PowerPoint;
3		работе	ЭБС РГГМУ
		собеседование,,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-
		работа студентов	портал. URL:
			www.chemport.ru.
	Сферическая симметрия, разделение переменных	Лекции,	Microsoft Windows
		лабораторные	Microsoft Office:Word,
		занятия, отчет по	Excel
4		лабораторной	PowerPoint;
		работе	ЭБС РГГМУ
		собеседование,,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-

		работа студентов	портал. URL:
			www.chemport.ru.
		Лекции,	Microsoft Windows
		лабораторные	Microsoft Office:Word,
		занятия, отчет по	Excel
		лабораторной	PowerPoint;
5	Промежуточная схема связи	работе	ЭБС РГГМУ
		собеседование,,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-
		работа студентов	портал. URL:
			www.chemport.ru.
	Расчет радиальных интегралов	Лекции,	Microsoft Windows
		лабораторные	Microsoft Office:Word,
		занятия, отчет по	Excel
		лабораторной	PowerPoint;
6		работе	ЭБС РГГМУ
		собеседование,,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-
		работа студентов	портал. URL:
			www.chemport.ru.
		Лекции,	Microsoft Windows
	Двухатомные молекулы, колебательное уравнение	лабораторные	Microsoft Office:Word,
		занятия, отчет по	Excel
		лабораторной	PowerPoint;
7		работе	ЭБС РГГМУ
		собеседование,	https://bibliotech.esstu.ru
		самостоятельная	Химический Интернет-
		работа студентов	портал. URL:
			www.chemport.ru.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ дисциплины

- 1. Учебные поточные аудитории;
- 2. Компьютерный класс
- 3. Мультимедийная техника и презентации. 4. Электронно-библиотечная система РГГМУ https://bibliotech.esstu.ru