федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра декоративно-прикладного искусства и реставрации живописи

Рабочая программа дисциплины

КОМПЬЮТЕРНАЯ ГРАФИКА

Основная профессиональная образовательная программа высшего образования по направлению подготовки / специальности

44.03.01 «ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ»

Направленность (профиль): Изобразительное искусство, дизайн и компьютерная графика

Уровень: **Бакалавриат**

Форма обучения Заочная

Согласовано Руководитель ОПОП	Председатель УМСИ.И. Палкин		
<u>Решен</u> Регинская Н.В.	Рекомендована решением Учебно-методического совета РГГМУ 24 .06.2021 г., протокол № 9		
	Рассмотрена и утверждена на заседании кафедры 02.06 2021 г., протокол № 10 Зав. кафедрой — Рессиер Регинская Н.В.		
	Автор-разработчик: Соколов Г.А.		

Санкт-Петербург 2021

Рассмотрено и рекомендовано к использованию в учебном процессе на 2022/2023 **учебный** год без изменений

Протокол заседания кафедры ДПИиРЖ от 08.07.2022 № 11

1. Цель и задачи освоения дисциплины

Цель дисциплины — формирование у студентов комплекса профессиональных знаний и умений (владений) и получение представлений в области компьютерной графики, умений читать и выполнять современные чертежи на «электронном» кульмане; усвоение принципов и техники построения чертежей в соответствии с государственными стандартами, развитие пространственного мышления с помощью 3D моделирования.

Основные задачи дисциплины:

- изучение основных понятий инженерной и компьютерной графики;
- изучение принципов построения современных графических систем;
- изучение наиболее употребляемых графических устройств;
- изучение основных этапов обработки графической информации в конвейерах еè ввода и вывода в графических системах;
- изучение современных алгоритмов обработки и преобразования графической информации, способов еè создания и форматов хранения;
- изучение форматов представления графических данных и целесообразности их использования в зависимости от типа решаемой задачи;
- научить создавать собственные графические представления, используя инструменты программного обеспечения компьютерной графики.

2. Место дисциплины в структуре основной профессиональной образовательной программы

Настоящая дисциплина относится к профессиональному циклу. Для направления 44.03.01 «Педагогическое образование» подготовки бакалавра настоящая дисциплина является вариативной.

Изучение данной дисциплины базируется на следующих дисциплинах:

- Математический анализ
- Алгебра и геометрия
- Физика
- Информатика и программирование
- Дискретная математика
- Практикум по ЭВМ
- Теория вероятностей и математическая статистика.

- Объектно-ориентированное программирование
- Операционные системы
- Дискретная геометрия и компьютерная визуализация

Для освоения учебной дисциплины студенты должны владеть основами линейной алгебры, аналитической геометрии и математического анализа, знать основы объектно-ориентированного программирования, в частности – язык С++, и владеть практическими навыками написания программ на этом языке.

3. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование компетенций: ПК-3; ПК-5

Таблица 1.

Профессиональные компетенции					
Код и наименование	Код и наименование	Результаты обучения			
профессиональной индикатора достижения					
компетенции	профессиональной				
	компетенции				
ПК-3 Способен	ПК-3.2. Проектирует	Знать:			
применять	педагогическую и	основные			
предметные знания	собственную творческую	композиционные средства			
для реализации	деятельность с учетом	для достижения			
образовательного	современного программного	гармонизации			
процесса и	обеспечения для творчества	композиции;			
профессионального	обучающихся в области	Уметь:			
творческого	дизайна и компьютерной	применять знания			
саморазвития	графике	основных типов цветовых			
		контрастов в композиции;			
		Владеть:			
	ПК -3.4. Демонстрирует	теоретическими знаниями по			
	уверенность во владении	основным стилям и			
	техниками и технологиями,	направлениям в			
	выразительными средствами	изобразительном			
	в изобразительном искусстве	искусстве и дизайнерской			
	и дизайне и компьютерной	деятельности;			
	графике				
	Трифике				
	ПК – 3.5. Воплощает				
	художественный замысел				
	посредством проектирования				
	и создания авторского				
	произведения искусства в				
	области изобразительного				
	искусства, дизайна и				
	компьютерной графики.				

ПК-5 Способен	ПК-5.1. Использует приемы	Знать:
использовать приемы	мотивации к учебной,	специализированное
вовлечения и	творческой, проектной,	программное обеспечение;
материально-	учебно-творческой	Уметь:
организовывать	деятельности.	составлять объемные,
деятельность		рельефно-плоскостные
обучающихся,		композиции из современных
направленную на		материалов, с учетом их
развитие интереса к		формообразующих свойств;
художественно-		Владеть:
творческой		современным
		специализированным
деятельности в		программным обеспечением и
рамках общего и		современными материалами в
дополнительного		области дизайна.
образования		

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часа.

Таблица 2. - Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Всего часов	
	Очная форма обучения	Заочная форма обучения
Объем дисциплины		144
Контактная работа		
обучающихся с		
преподавателем (по видам		
аудиторных учебных занятий)		
– всего:		
в том числе:		
лекции		8
занятия семинарского типа:		
практические занятия		8
лабораторные занятия		
Самостоятельная		128
работа (далее – СРС) –		
всего:		
в том числе:		
курсовая работа		-
контрольная работа		
Вид промежуточной		зачет, экзамен
аттестации		

4.2. Структура дисциплины

Таблица 3. Структура дисциплины для заочной формы обучения

	Тема дисциплины	Г о д	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		Формы текущего контроля успеваемости	Формируем ые компетенции	Индикаторы достижения компетенций	
			Лек ции	Пра ктич ески е заня тия	CPC			
1	Введение	3	1		2		ПК-3; ПК-5	ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
2	Растровая и векторная графика. Цвет	3	3	1	6		ПК-3; ПК-5	ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
3	Математические основы 2D и 3D графики	3	3	2	4			ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
4	Основные алгоритмы компьютерной графики	3	6	3	10			ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
5	Обработка изображений	3	5	2	8			ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
6	Графическая библиотека OpenGL	3	2	12	30			ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
7	Визуализация результатов научных вычислений	3	2	2	4		ПК-3; ПК-5	ПК-3.2, ПК- 3.4, ПК-3.5, ПК-4.1
	ИТОГО		22	22	64			

4.3. Содержание разделов и тем дисциплины

Раздел 1. Введение

История развития компьютерной графики. Области применения компьютерной графики. Примеры использования. Структура программы. Графический конвейер. Аппаратные средства компьютерной графики.

Раздел 2. Растровая и векторная графика. Цвет

Тема 1. Растровая и векторная графика.

Основные понятия растровой и векторной графики. Достоинства и недостатки разных

способов представления изображений. Параметры растровых изображений: разрешение, глубина цвета.

Тема 2. Цвет.

Свет и цвет: физические основы. Восприятие светового потока глазом человека. Характеристики цвета: яркость, светлость, тон, насыщенность. Основные цветовые модели и цветовые пространства.

Раздел 3. Математические основы 2D и 3D графики

Тема 1. Двумерная графика.

Системы координат. Аффинные преобразования плоскости: масштабирование, отражение, поворот, перенос, сдвиг. Матрицы преобразований. Однородные координаты

<u>Тема 2. Трехмерная графика.</u>

Правосторонняя и левосторонняя системы координат. Плоскости и прямые. Аффинные преобразования пространства. Кватернионы. Однородные координаты. Поверхности. Триангуляция: диаграмма Вороного и алгоритм Делоне.

Тема 3. Трехмерный мир на плоском экране.

Проектирование. Виды проекций. Ортогональное и перспективное проектирование. Получение проекций с помощью матричных преобразований.

Раздел 4. Основные алгоритмы компьютерной графики

Тема 1. Алгоритмы растеризации кривых.

Понятие растеризации. Связность пикселей. Растровое представление отрезка. Алгоритм Брезенхейма. Растровое представление окружности. Растровое представление кривых на плоскости. Кривые Безье первого, второго и третьего порядков. Многочлены Бернштейна. Интерполяция. Сплайны. Отсечение многоугольников.

<u>Тема 2. Алгоритмы изображения трехмерных объектов.</u>

Этапы отображения трехмерных объектов. Отсечение. Полигональные сетки. Определение видимости. Алгоритм плавающего горизонта. Алгоритм Робертса. Метод Z-буфера. Трассировка лучей. Алгоритм художника. Алгоритм Варнока. Алгоритм Вейлера-Азертона. Методы упорядочивания.

Тема 3. Алгоритмы закраски.

Источники света. Диффузное отражение и рассеянный свет. Зеркальное отражение. Методы закраски сплошных объектов: однотонная закраска, метод Гуро. метод Фонга. Тени и их виды. Алгоритмы затенения. Светопропускающие поверхности. Текстуры.

Раздел 5. Обработка изображений

Эффекты. Виды фильтров. Понятие линейного фильтра. Сглаживающие фильтры: фильтр Гаусса. Расширение динамического диапазона. Цветовая коррекция. Нелинейные фильтры.

Раздел 6. Графическая библиотека OpenGL

История создания. Основы работы: создание контекста, вывод примитивов, режимы. Полигональные модели. Графический конвейер. Преобразование вершин. Работа с матрицами. Шейдеры и язык GLSL. Освещение. Работа с текстурами. Буфер глубины. Смешивание цветов и прозрачность. Тени. Постобработка и фильтры. Анимация.

Раздел 7. Визуализация результатов научных вычислений

Задача визуализации данных. Способы представления данных. Примеры. Алгоритм визуализации научных данных. Библиотеки визуализации. Проблемы существующих систем визуализации.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Дистанционная поддержка дисциплины обеспечивается использованием электронной почты и LMS.

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр — 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 80;
- максимальное количество баллов за прохождение промежуточной аттестации 20;

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Формы промежуточной аттестации по дисциплине для заочной формы обучения промежуточная аттестация предусматривает зачет (1-й год обучения) и экзамен (2 –й год).

Перечень практических заданий для подготовки к зачету (5 семестр). Контролируемые компетенции

ПК-3; ПК-5- Примеры вопросов итоговой аттестации

- 1. Растровые и векторные изображения.
- 2. Свет и цвет. Характеристики цвета. Цветовые модели.
- 3. Аффинные преобразования на плоскости и в пространстве. Матрицы преобразований.
- 4. Проекция. Виды проекций. Получение проекций с помощью матричных преобразований.
- 5. Кватернион.
- 6. Поверхности. Триангуляция.
- 7. Алгоритмы растеризации кривых.
- 8. Алгоритмы определения областей видимости.
- 9. Трассировка лучей. Построение изображений с помощью обратной трассировки лучей.
- 10. Свет, отражения, прозрачность, тени.
- 11. Алгоритмы закраски.
- 12. Особенности и программная архитектура библиотеки OpenGL.
- 13. Устройство современных графических процессоров. Графический конвейер. Иерархия преобразований в OpenGL.
- 14. Задачи визуализации. Понятие о научной визуализации.

6.3. Балльно-рейтинговая система оценивания

Распределение баллов по видам учебной работы

5,6, семестры

Вид учебной работы, за которую ставятся баллы	Баллы
Текущий контроль. Задания	20
Текущий контроль. Задания	20
Текущий контроль. Задания	20
Контрольная работа Опрос по лекциям	20
Промежуточная аттестация	20
ИТОГО	100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Балльная шкала итоговой оценки на зачете

Оценка	Баллы
Зачтено	40-100
Не зачтено	0-39

Балльная шкала итоговой оценки на экзамене

Оценка	Баллы
Отлично	85-100
Хорошо	65-84
Удовлетворительно	40-64
Неудовлетворительно	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

8. Учебно-методическое и информационное обеспечение дисциплины обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

Основная литература

- 1. Боресков А. В., Шикин Е. В. Компьютерная графика: учебник и практикум для прикладного бакалавриата. М.: Издательство Юрайт, 2016. 219 с.
- 2. Ильин В.А., Ким Г.А. Линейная алгебра и аналитическая геометрия. М.: Издательство Московского университета, 2012. 400 с.
- 3. Винберг Э. Б. Курс алгебры. M.:МЦНМО, 2013. 590 с.
- 4. Верма Р.Д. Введение в OpenGL, 2-е издание. М.: Горячая линия- Телевом, 2015. 304 с.
- 5. Вольф Д. OpenGL 4. Язык шейдеров. Книга рецептов / пер. с англ. А.Н. Киселева. М.: ДМК Пресс, 2015. 368 с.
- 6. Херн Д., Бейкер М.П., Компьютерная графика и стандарт OpenGL, 3-е издание. -

М.:Вильямс, 2005. – 1168 с.

Дополнительная литература

- 1. Ильин В.А., Позняк Э.Г. Линейная алгебра. М.: Издательство Московского университета, 2014. 280 с.
- 2. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: Учебник для ВУЗ ов, 9-е издание. М.: Физико-математическая литература, 2002. 376 с.
- 3. Sellers G., Wright, Jr. R.S., Haemel N. OpenGL Superbible, 7th edition. Addison-Wesley, 2015. 1544 p.
- 4. Афанасьев В.О., Клименко С.В. Основы математического и программного обеспечения систем визуализации индуцированного виртуального окружения: учебное пособие. М.: МФТИ, 2014. 239 с.
- 5. Препарата Ф., Шеймос М. Вычислительная геометрия: Введение: Пер. с англ. под ред. Ю.М.Баяковского М.: Мир, 1989. 478 с.
- 6. Кравков С.В. Глаз и его работа. М.-Л. Изд. АН СССР, 1950. Ландсберг Г.С. Оптика. М.: Наука, 1976. 928 с.
- 7. Роджерс Д., Алгоритмические основы машинной графики. М.: Мир, 1989. 512 с.
- 8. Роджерс Д., Адамс Дж. Математические основы машинной графики: пер. с англ.— М.: Мир, 2001.-604 с.
- 9. De Berg M., van Kreveld M., Overmars M., Cheong O. Computational Geometry: algorithms and applications. 2nd edition. Springer-Verlag, 2008. 386 p.
- 10. Nielson G., Hagen H., Muller H. Scientific visualization: overviews, methodologies and techniques. IEEE CS 1997. 577 p.
- 11. Шикин Е.В., Плис А.И. Кривые и поверхности на экране компьютера. Руководство по сплайнам для пользователя. М., ДИАЛОГ- МИФИ 1996, 240 с.
- 12. Ласло М. Вычислительная геометрия и компьютерная графика на C++: Пер. с англ.– М.: «Издательство БИНОМ», 1997. 304 с.
- 13. Боресков А.В., Шикин Е.В. Компьютерная графика. Полигональные модели. М.: Диалог-МИФИ, 2001. 464 с.
- 14. Боресков А.В. Разработка и отладка шейдеров. БХВ-Петербург, 2006
- 15. Боресков А. В. Расширения OpenGL. БХВ-Петербург, 2005
- 16. Красильников Н.Н. Цифровая обработка 2D- и 3D-изображений: учебное пособие. СПб.: БХВ-Петербург, 2011. 608 с.
- 17. Лафоре Р. Объектно-ориентированное программирование в С++. СПб.:Питер, 2013. 928 с.
- 18. Luna F.D. Introduction to 3D Game Programming with DirectX 11. Dulles: Mercury learning

8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

https://www.opengl.org/wiki/Getting_Started

Для практических занятий необходим компьютерный класс. Каждый студент должен иметь свое рабочее место. Необходимое программное обеспечение:

Microsoft Visual Studio 2013 (или новее)

Графическая библиотека OpenGL 4 (или новее)

Пакет для растровой графики (например, GIMP, Paint.NET и т.д.)

Пакет для векторной графики (например, Inkscape и т.д.)

9. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение программы соответствует действующим санитарно-техническим и противопожарным правилам и нормам и обеспечивает проведение всех видов практических занятий, промежуточной аттестации и самостоятельной работы студентов.

Учебный процесс обеспечен аудиториями, комплектом лицензионного программного обеспечения, библиотекой РГГМУ.

Учебные аудитории для проведения практических занятий - укомплектованы специализированной (учебной) мебелью, доской.

Учебная аудитория для промежуточной аттестации - укомплектована специализированной (учебной) мебелью.

Помещение для самостоятельной работы студентов – укомплектовано специализированной (учебной) мебелью, компьютерами с доступом к сети Интернет и электронной информационно-образовательной среде РГГМУ.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий