федеральное государственное бюджетное образовательное учреждение высшего образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра метеорологических прогнозов

Рабочая программа дисциплины ПОДГОТОВКА ДАННЫХ ДЛЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Основная профессиональная образовательная программа высшего образования по направлению подготовки

05.03.04 «Гидрометеорология»

Направленность (профиль): **Метеорология**

Уровень: **Бакалавриат**

Форма обучения **Очная**

Согласовано	Утверждаю
Руководитель ОПОП	Председатель УМС <u>Учили</u> .И.И. Палкин
Абанников В.Н.	Рекомендована решением
71	Учебно-методического совета
	_19мая2021 г., протокол №8
	Рассмотрена и утверждена на заседании кафедрь 04 мая 2021 г., протокол № 9
	Зав. кафедрой Анискина О.Г.
	Авторы-разработчики:
	Ермакова Т.С.

1. Цель и задачи освоения дисциплины

Цель дисциплины «Подготовка данных для математического моделирования» - освоение обучающимися принципов построения и функционирования гидродинамических моделей атмосферы, познакомить обучающихся с принципами совместного использования результатов измерений и моделирования.

Задачи:

- освоение физических основ построения гидродинамических моделей атмосферы;
- освоение теоретических принципов разработки и функционирования гидродинамических моделей атмосферы;
- освоение математических основ методов пространственной интерполяции гидрометеорологических данных,
- освоение методов инициализации гидродинамических моделей атмосферы.

2. Место дисциплины в структуре ОПОП

Дисциплина «Подготовка данных для математического моделирования» для направления подготовки 05.03.04 — Гидрометеорология, профиль — Метеорология относится к дисциплинам по выбору Б1.В.ДВ.03.01 ОПОП, читается на 8 семестре для очной формы обучения.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Теория климата», «Методы работы с метеорологическими базами данных», «Компьютерные технологии в метеорологических исследованиях».

Параллельно с дисциплиной «Подготовка данных для гидродинамического моделирования» изучаются: «Гидродинамическое моделирование атмосферных процессов», «Спутниковый диагноз атмосферных процессов».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций: ПК-5.1, ПК-5.2.

Профессиональные компетенции

Таблица 1.

Код и	Код и наименование	Результаты обучения
наименование	индикатора достижения	
профессиональной	профессиональной	
компетенции	компетенции	
ПК-5 Способен	ПК-5.1 Использует	Знать:
систематизировать	различные источники	- физическую и математическую
метеорологическую	(данные наблюдений,	постановку задачи гидродинами-
информацию,	экспериментов и	ческого моделирования атмосфер-
полученную	результатов	ных физических и химических
различными	моделирования) и методы получения информации о	процессов;
способами	конкретном явлении или	Уметь:
	процессе	- применять современные
		численные методы и другие
		количественные технологии в

<u></u>	
	научных исследованиях и
	прогностических разработках;
	- пользоваться численными моде-
	лями;
	Владеть:
	- способами учета взаимодействия
	физических и химических
	процессов в нижней атмосфере.
ПК-5.2 Оценивает качество	Знать:
полученной	- методы параметризации
метеорологической	процессов подсеточного масштаба.
информации.	Уметь:
	- разрабатывать алгоритмы
	усвоения данных
	гидродинамическими моделями
	атмосферы;
	- анализировать результаты
	модельных экспериментов.
	Владеть:
	- методикой обработки результатов
	гидродинамического моделиро-
	вания;
	– методами модельной
	ассимиляции гидрометеоро-
	логических данных, повышающих
	качество моделирования
	атмосферных процессов.

4. Структура и содержание дисциплины

4.1. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часа.

Таблица 2. Объем дисциплины по видам учебных занятий в академических часах 2021 года набора

Объём дисциплины	Всего часов			
	Очная форма обучения	Заочная форма обучения		
Объем дисциплины				
Контактная работа	28	12		
обучающихся с преподавателем				
(по видам аудиторных учебных				
занятий) – всего:				
в том числе:	-			
лекции	14	6		
занятия семинарского типа:				
практические занятия				
лабораторные занятия	28	6		
Самостоятельная работа (далее – СРС) – всего:	66	96		
в том числе:	-			
курсовая работа				
контрольная работа				
Вид промежуточной	экзамен	экзамен		
аттестации				

4.2. Структура дисциплины

Таблица 3.

Структура дисциплины для очной формы обучения

2021 года набора

№ п/п	Раздел и тема дисциплины	Семестр	раб само	Табораторные работы, в стояте работы работы работы	з т.ч. льная а	Формы текущего контроля успеваемости	Формируемые компетенции	Индикаторы достижения компетенций
	Методы про- странственной интерполяции гидрометеоро-	8	2	4	6	Опрос на лекции. Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного	ПК-5	ПК-5.1

	логических данных					задания		
2	Объективное сравнение результатов моделирования и наблюдений	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1
3	Метод после- довательных приближений	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1 ПК-5.2
4	Статистическая структура метеорологических полей. Статистическая интерполяция гидрометеорологических данных	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1 ПК-5.2
5	Вероятностные методы ассимиляции данных	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1 ПК-5.2
6	Проблема инициализации гидродинамических моделей	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1 ПК-5.2
7	Ре-анализ гидрометеорологиче ских данных	8	2	4	10	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-5	ПК-5.1 ПК-5.2
	ИТОГО:		14	28	66	-	-	

Таблица 4.

Структура дисциплины для заочной формы обучения 2021 года набора

№ п/п			ра(само	ды уче боты, в стояте работ дентов	з т.ч. льная а		компетенции	достижения енций
	Раздел и тема дисциплины	Год	Лекции	Лабораторные работы	CPC	Формы текущего контроля успеваемости	Формируемые к	Индикаторы дости: компетенций
1	Методы про-	3	2	2	32	Опрос на лекции. Контрольное	ПК-5	ПК-5.1

	странственной					расчётное задание, опрос		
	интерполяции			студентов по результат		студентов по результатам		
	гидрометеоро-					контрольного расчетного		
	логических данных					задания		
	Метод после-					Контрольное расчётное зада-		
2	довательных	3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		32	ние, опрос студентов по ПК-		ПК-5.1 ПК-5.2
	приближений	3	3 2 2		32	результатам контрольного		11K-3.2
	приолижении					расчетного задания		
	Проблема					Контрольное расчётное зада-		
3	инициализации	3	2 2 32		32	ние, опрос студентов по	ПК-5	ПК-5.1
3	гидродинамических	3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		32	результатам контрольного	IIK-J	ПК-5.2
	моделей					расчетного задания		
	ИТОГО:		6	6	96	-	•	

4.3. Содержание разделов дисциплины

4.3.1 Методы пространственной интерполяции гидрометеорологических данных

Проблема прогноза погоды как детерминистская задача с начальными условиями. Организация системы наблюдений. Анализ результатов наблюдений как подготовка к прогностической части.

Значение пространственного анализа полей гидрометеорологических данных. Линейные и нелинейные методы интерполяции. Интерполяция с использованием базисных функций. Сплайн интерполяция.

4.3.2 Объективное сравнение результатов моделирования и наблюдений

Соотносимость результатов наблюдений и моделирования. Ошибки наблюдений и моделирования. Сравнение ошибок наблюдений и моделирования. Последовательная ассимиляция результатов измерений. Базовое уравнение обновления результатов моделирования с учетом результатов измерений на основе сравнения ошибок наблюдений и моделирования.

4.3.3 Метод последовательных приближений

Использование предварительной информации для ассимиляции и ее последовательное уточнение на основе анализа данных измерений. Использование в качестве первого приближения климатологических значений, прогноза с предыдущего модельного шага и их комбинации. Последовательное уточнение результатов ассимиляции.

4.3.4 Статистическая структура метеорологических полей

Пространственные и временные связи между метеорологическими переменными. Ошибки наблюдений и моделирования. Связи между ошибками и ковариационные матрицы ошибок. Методы определения ковариационных матриц.

Постановка задачи статистической интерполяции. Использование априорных и апостериорных весов. Проблема минимизации матрицы ошибок. Ошибка анализа в статистической интерполяции.

4.3.7 Вероятностные методы ассимиляции данных

Вероятностный подход к ассимиляции данных. Проблема нахождения минимальных и максимальных значений быстроменяющихся функций. Постановка задачи вариационной ассимиляции данных. Построение функционалов качества применительно к проблеме инициализации атмосферных моделей.

4.3.11 Проблема инициализации гидродинамических моделей

Пространственные и временные масштабы атмосферных процессов. Синоптические и планетарные процессы в проблеме ассимиляции атмосферных данных. Проблема фильтрации шумов в ассимиляционных моделях.

4.3.13 Ре-анализ гидрометеорологических данных

Применение методов ассимиляции для оперативного прогноза погоды и ретроспективных расчетов. Особенности ассимиляции данных наблюдений при ретроспективных расчетах. Преимущества ре-анализа по сравнению с модельными расчетами без ассимиляции результатов наблюдений. Погрешности и неточности данных ре-анализа. Существующие базы данных ре-анализа ERA-Interim, MERRA, JRA, MetOffice b lh/

4.4. Содержание занятий семинарского типа

Таблица 5. Содержание практических занятий для очной формы обучения

№ темы дисциплины	Тематика практических занятий	Всего часов	В том числе часов практической подготовки
1	Линейная интерполяция метеорологических полей	4	4
2	Квадратичная интерполяция метеорологических полей	4	4
3	Интерполяция метеорологических полей сплайнами	4	4
4	Полиномиальная интерполяция метеорологических полей	4	4
5	Оптимальная интерполяция метеорологических полей	4	4
6	Метод наискорейшего спуска для метеорологических полей	4	4
7	Применение фильтра Калмана для метеорологических полей	4	4

Таблица 6. Содержание практических занятий для заочной формы обучения

№ темы	Тематика практических занятий	Всего	В том числе часов
дисциплины		часов	практической

			подготовки
1	Линейная интерполяция метеорологических полей	2	2
2	Квадратичная интерполяция метеорологических полей	2	2
3	Интерполяция метеорологических полей сплайнами	2	2

5. Учебно-методическое обеспечение самостоятельной работы студентов и оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

В течение семестра студент обязан самостоятельно прорабатывать материал, изложенный на лекциях, для чего рекомендуется использовать сделанные на лекциях конспекты, изучить основную и дополнительную литературу. Дополнительно к лекционным и практическим занятиям студент может приходить на консультации с преподавателем, для чего студент может использовать возможности удаленного доступа (Интернет).

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 70:
 - максимальное количество баллов за посещение лекционных занятий 7;
 - максимальное количество баллов за прохождение промежуточной аттестации 23.

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – экзамен.

Форма проведения экзамена: письменно по билетам

Перечень вопросов для подготовки к экзамену:

ПК-5.1

- 1. Концепция и задачи модельной ассимиляции данных;
- 2. Субъективный анализ метеорологических полей и первые шаги развития объективного анализа;
 - 3. Ассимиляции данных как часть прогностической системы;
 - 4. Среднеквадратические оценки в метеорологии;
 - 5. Итерационный цикл в методе последовательных уточнений;
 - 6. Однокомпонентная оптимальная интерполяция;
 - 7. Ошибка анализа в оптимальной интерполяции;
 - 8. Безразмерная форма уравнений оптимальной интерполяции;
- 9. Метод оптимальной интерполяции для однородных условий и независимых измерений;
 - 10. Сравнение разных случаев двух наблюдений в оптимальной интерполяции;

- 11. Обобщенный алгоритм оптимальной интерполяции;
- 12. Статистические характеристики метеорологических полей;

ПК-5.2

- 1. Линейная и квадратичная интерполяция функции, заданной в узлах;
- 2. Интерполяция сплайнами;
- 3. Локальная полиномиальная аппроксимация метеополей;
- 4. Многомерная интерполяция с разложением по базисным функциям
- 5. Метод динамической релаксации (nudging);
- 6. Метод последовательных уточнений;
- 7. Применение оптимальной интерполяции к случаю сети скученных станций;
- 8. Вероятностный подход к ассимиляции данных;

Курсовая работа

Выполнение курсовой работы дисциплиной не предусмотрено.

6.3. Балльно-рейтинговая система оценивания

Таблица 7.

Распределение баллов по видам учебной работы

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-7
Опрос на лекциях	0-14
Контрольное расчётное задание №1	0-8
Контрольное расчётное задание №2	0-8
Контрольное расчётное задание №3	0-8
Контрольное расчётное задание №4	0-8
Контрольное расчётное задание №5	0-8
Контрольное расчётное задание №6	0-8
Контрольное расчётное задание №7	0-8
Промежуточная аттестация	0-23
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Таблица 8.

Балльная шкала итоговой оценки на зачете

Оценка	Баллы
Зачтено	40-100
Незачтено	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Подготовка данных для гидродинамического моделирования».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

Основная

- 1. Evensen G. Data assimilation: The ensemble Kalman filter. Berlin: Springer, 2007.
- 2. Kalnay E. Atmospheric Modeling. Data Assimilation and Predictibility. Cambridge University Press, 2003.
- 3. Смышляев С.П. Методические указания по дисциплине «Ассимиляция гидрометеорологических данных». Издательство РГГМУ. 2016. 22 стр.

Дополнительная литература

- 1. Daley R. Atmospheric data analysis Cambridge University Press, 1992
- 2. Кобышева Н.В., Наровлянский Г.Я.. Климатическая обработка метеорологической информации. Л.: Гидрометеоиздат, 1978. 296 с.
- 3. Рожков В.А. Теория и методы статистического оценивания вероятностных характеристик случайных величин и функций с гидрометеорологическими примерами. Книга 1. СПб.: Гидрометеоиздат, 2001. 340 с.
- 4. Гандин Л.С., Каган Р.Л. Статистические методы интерпретации метеорологических данных. Л.: Гидрометеоиздат, 1976. 360 с.

8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

http://hfip.psu.edu/EDA2010/

http://www.metoffice.gov.uk/research/modelling-systems/unified-model/weather-forecasting

http://www.ecmwf.int/

https://mipt.ru/education/chair/mathematics/upload/99f/algsaasimilation.pdf

8.3. Перечень программного обеспечения

- 1. Microsoft Excel
- 2. Fortran

8.4. Перечень информационных справочных систем

1. Библиотека РГГМУ

8.5. Перечень профессиональных баз данных

Профессиональные базы данных не используются

9. Материально-техническое обеспечение дисциплины

Учебная аудитория для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования, обеспечивающим тематические иллюстрации, соответствующие рабочим учебным программе дисциплины

Учебная аудитория для проведения занятий семинарского типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет" и обеспеченностью доступа к архиву метеорологических карт и наблюдений

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий