федеральное государственное бюджетное образовательное учреждение высшего образования

российский государственный гидрометеорологический университет Кафедра метеорологических прогнозов

Рабочая программа дисциплины **МОДЕЛИРОВАНИЕ КЛИМАТИЧЕСКИХ ИЗМЕНЕНИЙ**

Основная профессиональная образовательная программа высшего образования по направлению подготовки / специальности

05.03.05 «Прикладная гидрометеорология»

Направленность (профиль): **Авиационная метеорология**

Уровень: **Бакалавр**

Форма обучения **Очная**

Согласовано Руководитель ОПОП	Утверждаю Председатель УМС_РГГМУ <u>Уселен</u> И.И. Палкин
Неёлова Л.О.	Рекомендована решением Учебно-методического совета
	Авторы-разработчики: Ермакова Т.С. Анискина О.Г.

1. Цель и задачи освоения дисциплины

Цель дисциплины — освоение обучающимися принципов построения и функционирования гидродинамических моделей атмосферы, способных создавать гидродинамические модели атмосферных процессов а и граммотно использовать результаты моделирования.

Задачи:

- понимать физических основ построения гидродинамических моделей атмосферы,
- понимать теоретических принципов разработки и функционирования гидродинамических моделей атмосферы,
- овладевать численными методами решения уравнений гидродинамики атмосферы,
- применять результатов гидродинамического моделирования при составлении оперативных прогнозов погоды.

2. Место дисциплины в структуре ОПОП

Дисциплина «Моделирование климатических изменений» для направления подготовки 05.03.05 — Прикладная гидрометеорология, профиль — Авиационная метеорология относится к дисциплинам по выбору Б1.В.ДВ.02.02 ОПОП, читается на 8 семестре для очной формы обучения.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Численные методы решения гидрометеорологических задач», «Компьютерные технологии в метеорологических исследованиях», «Теория климата».

Параллельно с дисциплиной «Моделирование климатических изменений» изучаются: «Гидродинамическое моделирование атмосферных процессов», «Региональные особенности атмосферной циркуляции».

Дисциплина «Моделирование климатических изменений» является базовой для освоения дисциплин: «Особенности метеорологического обеспечения экономики в высоких широтах», «Практическая метеорология».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций: ПК-2.1, ПК-2.2

Профессиональные компетенции

Таблица 1.

Код и	Код и наименование	Результаты обучения
наименование	индикатора достижения	
профессиональной	профессиональной	
компетенции	компетенции	
ПК-2 Способен	ПК-2.1 Осуществляет	Знать:
анализировать	анализ явлений и	– систему получения, сбора и
явления и процессы	процессов, происходящих в	усвоения исходной информации и
природной среды,	природной среде, на основе	методы её обработки.
	данных наблюдений,	Уметь:
выявлять их	экспериментальных и	– уметь пользоваться данными

закономерности	модельных данных	наблюдений,
- suiterie i i e price i i i		экспериментальными и
		модельными данными;
		Владеть:
		– навыками обработки доступной
	HIC 2.2 D	мтеоерологической информации.
	ПК-2.2 Выявляет	Знать:
	закономерности и аномалии	 методы экстраполяции с учетом
	происходящих процессов в	особенностей климатических
	природной среде.	особенностей;
		Уметь:
		– учитывать особенности
		регионального климата при
		разработке прогнозов малой
		заблаговременности;
		Владеть:
		- навыками обработки полей
		гидрометеорологической
		информации с целью выявления
		региональных особенностей
		климатического характера.

4. Структура и содержание дисциплины

4.1 Объем дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

Таблица 2. Объем дисциплины по видам учебных занятий в академических часах 2021 года набора

Объём дисциплины	Всего часов		
	Очная форма обучения		
Объем дисциплины			
Контактная работа обучающихся с преподавателем (по	28		
видам аудиторных учебных занятий) – всего:			
в том числе:	-		
лекции	14		
занятия семинарского типа:			
практические занятия			
лабораторные занятия	14		
Самостоятельная работа (далее – СРС) – всего:	72		
в том числе:	-		
курсовая работа			
контрольная работа			
Вид промежуточной аттестации	зачет		

4.2. Структура дисциплины

Таблица 3.

Структура дисциплины для очной формы обучения

2021 года набора

№ п/п	Раздел и тема дисциплины	Семестр	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		бной з т.ч. льная а , час.	Формы текущего контроля успеваемости	Формируемые компетенции	Индикаторы достижения компетенций
1	Общие свойства климатической системы	8	2	-	4	Опрос студентов на лекции	ПК-2	ПК-2.1
2	Постановка задачи моделирования изменения климата	8	2	4	6	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-2	ПК-2.1
3	Процессы, влияющие на	8	2	-	7	Опрос студентов на лекции	ПК-2	ПК-2.1 ПК-2.2

4	формирование и изменения климата Система уравнений климатических	8	2	-	7	Опрос студентов на лекции	ПК-2	ПК-2.1 ПК-2.2
5	моделей Распространение солнечной радиации в земной атмосфере. Нагрев атмосферы солнечной радиацией	8	4	6	7	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-2	ПК-2.1 ПК-2.2
6	Парниковый эффект атмосферы и его моделирование	8	2	4	7	Контрольное расчётное задание, опрос студентов по результатам контрольного расчетного задания	ПК-2	ПК-2.1 ПК-2.2
7	Численные методы решения уравнений климатической системы	8	2	-	6	Опрос студентов на лекции	ПК-2	ПК-2.1 ПК-2.2
	ИТОГО:		14	14	44	-	-	-

4.3 Содержание разделов дисциплины

4.3.1 Общие свойства климатической системы.

Понятие климата. Значимость изменений климата и актуальность их исследования. Место климатологии среди других наук и связь с ними. Краткие сведения из истории климатологии. Всемирные климатические программы и основные направления международного сотрудничества в области исследований климата. Национальная программа исследований климата. Методы изучения изменений климата.

4.3.2 Постановка задачи моделирования изменения климата.

Циркуляция атмосферы и ее влияние на формирование климата. Схема ОЦА. Климатические центры действия и фронты. Особенности циркуляции в умеренных и высоких широтах и ее влияние на годовой ход температуры в высоких широтах. Траектории циклонов и антициклонов, повторяемость барических систем и их траекторий в различных частях земного шара. Особенности циркуляции атмосферы внутри тропических широт. Внутритропическая зона конвергенции. Тропические циклоны. Климатическая роль пассатов и муссонов. Различные взгляды на муссонную циркуляцию. Влияние циркуляции атмосферы на термический режим и режим увлажнения.

4.3.3 Процессы, влияющие на формирование и изменения климата.

Климатообразующие факторы, неоднозначность их трактования. Приход солнечной радиации, характер подстилающей поверхности и общая циркуляция атмосферы как основные физические факторы климатообразования. Антропогенные факторы изменения климата

4.3.4 Система уравнений климатических моделей

Фундаментальные законы физики как основа для уравнений климатической системы. Уравнения гидротермодинамики атмосферы. Инварианты моделей климатической системы. Абсолютная и потенциальная температура. Уравнение движения. Гидростатическое приближение. Гидростатические и негидростатические модели климатической системы.

4.3.5 Распространение солнечной радиации в земной атмосфере. Нагрев атмосферы солнечной радиацией

Распространение солнечной радиации в Земной атмосфере. Прохождение солнечной радиации через плоско-параллельную и сферическую атмосферу. Оптическая масса атмосферы. Полный поток коротковолновой радиации в атмосфере. Радиационный баланс Земли как планеты. Вклад аэрозолей и водяного пара в ослабление солнечной радиации. Радиационные процессы на верхней границе земной атмосферы и их роль в формировании климата, суточные и годовые суммы. Инфракрасная и ультрафиолетовая составляющая радиации.

Нагрев атмосферы при поглощении солнечной радиации атмосферными газами. Приток солнечной радиации к земной поверхности. Солнечная радиация на земной поверхности: прямая, рассеянная и суммарная. Альбедо земной поверхности и облаков, поглощенная радиация. Астрономические, геофизические и естественные факторы изменения климата и их динамика. Распределение инсоляции на верхней границе атмосферы. Эксцентриситеты земной орбиты, угла наклона плоскости эклиптики к плоскости экватора. Прецессия земной оси – как факторы вариации солнечной постоянной. Горизонтальная и вертикальная изменчивость радиационного нагрева атмосферы.

4.3.6. Парниковый эффект атмосферы и его моделирование

Парниковый эффект и его простейшая модель. Причины парникового эффекта. Влияние парникового эффекта на климат. Основные парниковые газы. Относительный вклад разных газов в парниковый эффект. Парниковые потенциалы отдельных газов. Возмущение радиационного баланса при увеличении концентраций парниковых газов. Моделирование парникового эффекта в моделях общей циркуляции атмосферы.

4.3.7 Численные методы решения уравнений климатической системы

Конечно-разностная аппроксимация дифференциальных операторов моделей климатической системы. Аппроксимация пространственных операторов моделей климатической системы. Смешанная краевая задача климатической системы. Сведение смешанной краевой задачи к задаче с начальными данными (задаче Коши). Метод шагов по времени.

4.4. Содержание занятий семинарского типа

Таблица 4. Содержание практических занятий для очной формы обучения

№ темы Тематика практи	ческих занятий Всего	В том числе
------------------------	----------------------	-------------

дисциплины		часов	часов практической подготовки
2	Постановка задачи численного моделирования изменений климата.	4	4
	Расчет эффективной температуры Земли как планеты на основе интегральных соотношений. Расчет нагрева атмосферы солнечной радиацией.		6
6	Расчеет охлаждения атмосферы уходящей радиацией.	4	4

5. Учебно-методическое обеспечение самостоятельной работы студентов и оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

В течение семестра студент обязан самостоятельно прорабатывать материал, изложенный на лекциях, для чего рекомендуется использовать сделанные на лекциях конспекты, изучить основную и дополнительную литературу. Дополнительно к лекционным и практическим занятиям студент может приходить на консультации с преподавателем, для чего студент может использовать возможности удаленного доступа (Интернет).

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля -68;
- максимальное количество баллов за посещение лекционных занятий 7;
- максимальное количество баллов за прохождение промежуточной аттестации 25.

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – зачет.

Форма проведения зачета: письменно по билетам

Перечень вопросов для подготовки к зачету:

ПК-2.1

- 1. Вычислить содержание атмосферных газов при заданных отношениях смеси.
- 2. Рассчитать скорость образования вторичных атмосферных газов при заданных концентрациях первичных атмосферных газов?
- 3. Сравнить атмосферный перенос коротко и долгоживущих атмосферных примесей.

ПК-2.2

- 1. Оценить время жизни первичных атмосферных примесей.
- 2. Оценить вертикальное перемешивание атмосферных газов при заданных коэффициентах турбулентности.
- 3. Оценить скорость гравитационного осаждения аэрозольных частиц разных размеров.

Курсовая работа

Выполнение курсовой работы дисциплиной не предусмотрено.

6.3. Балльно-рейтинговая система оценивания

Распределение баллов по видам учебной работы

Таблица 5.

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	0-7
Опрос на лекциях	0-14
Контрольное расчётное задание №1	0-18
Контрольное расчётное задание №2	0-18
Контрольное расчётное задание №3	0-18
Промежуточная аттестация	0-25
ИТОГО	0-100

Минимальное количество баллов для допуска до промежуточной аттестации составляет 40 баллов при условии выполнения всех видов текущего контроля.

Таблица 6.

Балльная шкала итоговой оценки на зачете

Оценка	Баллы
Зачтено	40-100
Незачтено	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Методических рекомендации для обучающихся по освоению дисциплины «Моделирование климатических изменений».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

Основная

- 1. Мордвинов В.И., Латышева И.В., Девятова Е.В. Теория климата. Учебное пособие. Иркутск. Издательство ИГУ. 2013. 187 с.
- 2. Переведенцев Ю. П. Теория климата. Казань. : Изд. Казан. ун-та, 2009. 503 с..
- 3. Володин Е.М., Дианский Н.А. Моделирование циркуляции атмосферы. Курс лекций. Москва, РАН, МГУ, 2017. 96 с..
- 4. Кислов А.В. Климатология с основами метеорологии. Издательский центр «Академия», М. 2016. 224 с.

Дополнительная литература:

- 1. Монин А.С. Введение в теорию климата Л., Гидрометеоиздат, 1982. 246 с.
- 2. Дымников В. П. О предсказуемости изменений климата // Изв. РАН. Физика атмосферы и океана. 1998. Т. 34, № 5. С. 741–751.
- 3. Монин А. С., Шишков Ю. А. Климат как проблема физики // Успехи физ. наук. 2000. Т. 170. С. 13–24.

- 4. Математическое моделирование общей циркуляции атмосферы и океана / Г. И. Марчук, В.
- П. Дымников, В. Б. Залесный, В. Н. Лыкосов, В. Я. Галин. Л.: Гидрометеоиздат, 1984. 320 с.
- 5. Миланкович М. Математическая климатология и астрономическая теория колебаний климата: пер. с нем. / под ред. С. Л. Бастамова. М.; Л. ГОНТИ, 1939. 208 с.
- 6. Матвеев Л. Т. Теория общей циркуляции атмосферы и климата Земли. Л.: Гидрометеоиздат, 1991. С. 158–180.

8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

- 1. http://www.scert.ru/conferences/cites/2015/presentation/Presentation/School/20.06.15/2-Dymnikov.pdf
- 2. http://method.meteorf.ru/publ/tr/tr359/tolstih.pdf
- 3. https://www.inm.ras.ru/wp-content/uploads/direct2.pdf
- 4. https://ru-ecology.info/term/6188/
- 5. http://d33.infospace.ru/d33_conf/tarusa2016/15.pdf
- 6. https://studfile.net/preview/7604595/
- 7. https://ru.qwe.wiki/wiki/Climate_model

8.3. Перечень программного обеспечения

1. Microsoft Excel

8.4. Перечень информационных справочных систем

1. Библиотека РГГМУ

8.5. Перечень профессиональных баз данных

Профессиональные базы данных не используются

9. Материально-техническое обеспечение дисциплины

Учебная аудитория для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, набором демонстрационного оборудования, обеспечивающим тематические иллюстрации, соответствующие рабочим учебным программе дисциплины

Учебная аудитория для проведения занятий семинарского типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет" и обеспеченностью доступа к архиву метеорологических карт и наблюдений

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий