федеральное государственное бюджетное образовательное учреждение высшего образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Метеорологии, климатологии и охраны атмосферы

Рабочая программа по дисциплине

КЛИМАТОЛОГИЯ

Основная профессиональная образовательная программа высшего образования программы бакалавриата по направлению подготовки

05.03.05 Прикладная гидрометеорология

Направленность (профиль): **Прикладная метеорология**

Уровень: Бакалавриат

Форма обучения Очная/Заочная

Согласовано	Председатель УМС <u>Унимен</u> и.И. Палкин
Руководитель ОПОП «Прикладная метеорология» ВОЛОБУЕВОВ	Рекомендована решением Учебно-методического совета РГГМУ «
	Рассмотрена и утверждена на заседании кафедры МКОА «12_»мая2021_г., протокол №9_ Зав. кафедрой Сероухова О.С.
	Автор-разработчик: Лобанов В.А.

Санкт-Петербург 2021

1. Цели освоения дисциплины

Климатология является одной из ведущих геофизических дисциплин особенно в современный период антропогенного изменения климата. Поэтому знание основ климатологии необходимо для понимания формирования различных видов климатов на планете и основных факторов, которые формирует различный климат в разных частях Земли.

Целью освоения дисциплины «Климатология» является подготовка бакалавров по направлению подготовки 05.03.05 «Прикладная гидрометеорология» (профиль «прикладная метеорология»), владеющих знаниями в объеме, необходимом для понимания основ общей климатологии, факторов формирования климата и распределения климатических характеристик по поверхности земного шара.

Основные задачи дисциплины «Климатология» связаны с освоением студентами:

- целей, задач и составляющих дисциплины климатологии;
- знаний о климатической системе и ее подсистемах;
- знаний об основных факторах формирования климата, которые делятся на внешние астрономические факторы, факторы циркуляции атмосферы и океана и факторы подстилающей поверхности;
- теории радиационного и теплового балансов земной поверхности и системы земля-атмосфера;
- пространственных распределений климатических характеристик по Земному шару и климатических классификациях.

Дисциплина изучается студентами, обучающимися по программе подготовки академического бакалавра на метеорологическом факультете, в 5-ом семестре.

2. Место дисциплины в структуре ОПОП

Дисциплина «Климатология» для подготовки бакалавров по направлению 05.03.05 — Прикладная гидрометеорология, по профилю подготовки «Прикладная метеорология» относится к дисциплинам, формируемым участниками образовательных отношений.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин: «Геофизика», «Теория вероятности и математическая статистика», «Физика атмосферы», «Физическая метеорология», «Практическая метеорология».

Параллельно с дисциплиной «Климатология» изучаются дисциплины: «Методы и средства гидрометеорологических измерений», «Статистические методы анализа гидрометеорологической информации», «Синоптическая метеорология».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование профессиональных компетенции выпускников ОПК-2.1; ОПК-2.2, ОПК-2.3

Таблица 1 - Профессиональные компетенции

Код и наименова- ние профессио- нальной компетен- ции	Код и наименование индикатора достижения профессиональной компетенции	Результаты обучения
ОПК – 2 Способен	ОПК-2.1 Выявляет и	Знать: климатическую систему и ее ос-
применять знания	анализирует факторы,	новные подсистемы (атмосфера, гидро-
физико-	приводящие к возник-	сфера, криосфера, биосфера, литосфера),
динамических прин-	новению явлений и	основные факторы, формирующие климат:
ципов явлений и	процессов, происходя-	солнечная радиация, адвекция (циркуля-
процессов, происхо-	щих в природной среде	ция атмосферы), рельеф, постилающая по-

дящих в природной среде, давать их качественную оценку и выделять антропогенную составляющую.

и определяет механизмы их взаимодействия

верхность, а также:

- -цели, задачи и составляющие климатологии;
- историю становления и развития климатологии;
- составляющие радиационного и теплового балансов и их распределение по территории Земли;

Уметь: рассчитывать приходящую солнечную радиацию на заданной широте за сутки, калорические полугодия и год; определять средние многолетние климатические характеристики в пунктах наблюдений и строить их пространственные распределения в среде ГИС; давать объяснеобоснование пространственно-И временным распределениям приходящей солнечной радиации; получать пространственные распределения климатических характеристик и давать объяснения их закономерностям; получать распределения климатических характеристик внутри года и давать их интерпретацию для разных широтных зон.

Владеть: инструментами и методами анализа факторов формирования климата, включая расчеты приходящей радиации на верхней границе атмосферы, составляющих радиационного и теплового балансов и определением форм циркуляции атмосферы.

ОПК – 2 Способен применять знания физикодинамических принципов явлений и процессов, происходящих в природной среде, давать их качественную оценку и выделять антропогенную составляющую. ОПК-2.2 Дает качественную оценку механизмов взаимодействия явлений и (или) процессов природной среды

Знать: научную основу различных механизмов взаимодействия в климатической системе, включая взаимодействие и взаимосвязь процессов в атмосфере и океане, влияние гор на климатические характеристики, особенности общей циркуляции атмосферы и океана.

Уметь: оценивать количественное влияние факторов солнечной радиации, адвекции, высоты местности, альбедо на климатические характеристик и их пространственные распределения.

Владеть: методами оценки влияния различных факторов климатической системы как на отдельные климатические характеристик, так и на их комплексы, представленные в виде климатических классификаций и климатического районирования.

ОПК – 2 Способен	ОПК-2.3 Выделяет ан-	Знать: проблему современного антропо-
применять знания	тропогенную состав-	генного воздействия на окружающую сре-
физико-	ляющую явлений и	ду и климатическую систему и пути реше-
динамических прин-	процессов, происходя-	ния этой проблемы.
ципов явлений и	щих в природной среде,	Уметь: выявлять основные последствия,
процессов, происхо-	оценивает последствия	связанные с современным антропогенным
дящих в природной	их влияния на компо-	воздействием на климатическую систему и
среде, давать их ка-	ненты природной сре-	климатические характеристики.
чественную оценку	ды	Владеть: методами оценки антропогенно-
и выделять антропо-		го воздействия на климатические характе-
генную составляю-		ристики.
щую.		

4. Структура и содержание дисциплины

Объем дисциплины составляет 2 зачетные единицы, 72 академических часа.

Таблица 2. - Объем дисциплины по видам учебных занятий в академических часах

Объём дисциплины	Bcc	его часов
	Очная форма обучения	Заочная форма Обучения
Общая трудоёмкость дисциплины	72	72
Контактная работа обучающихся с преподавателям (по видам аудиторных учебных занятий)	28	8
- всего:		
в том числе:		
лекции	14	4
практические занятия	14	4
Самостоятельная работа (СРС) – всего:	44	64
Вид промежуточной аттестации (экзамен)	зачет	зачет

4.2. Структура дисциплины

Таблица 3. - Структура дисциплины для очной формы обучения

№	Разделы	Семестр	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		работы, в т.ч. самостоятельная работа студентов,		работы, в т.ч. самостоятельная работа студентов		работы, в т.ч. самостоятельная работа студентов,		текущего	Форми- руемые	Индикато ры достижен
п/п	дисциплины	Сем	Лекции	Практич.	CPC	контроля успеваемо- сти	компетен- ции	ия компетен ций					
1	Цели, задачи и история развития климатологии	5	2	2	6	Тесты, задания	ОПК-2.1	ОПК-2.1					

	Климатическая система и ее составляющие							
2	Астрономические факторы формирования климата	5	2	2	6	Тесты, задания	ОПК-2.1	ОПК-2.1
3	Радиационный и тепловой балансы подстилающей поверхности, его составляющие и их распределение по поверхности Земли и внутри года	5	2	2	6	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
4	Факторы общей цирку- ляции атмосферы	5	2	2	6	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
5	Факторы общей цирку- ляции океана Влияние рельефа на климат	5	2	2	8	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
6	Пространственное распределение климатических характеристик и климатические классификации.	5	4	4	12	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
	ИТОГО		14	14	44			
Сучет	учетом трудозатрат на по га	дгот	овку	и сда	чу за-		72	

Таблица 4. - Структура дисциплины для заочной формы обучения

№	Разделы	стр	Виды учебной работы, в т.ч. самостоятельная работа студентов, час.		работы, в т.ч. самостоятельная		текущего	Форми- руемые	Индикато ры достижен
п/п	дисциплины	Семестр			контроля успеваемо- сти	компетен- ции	ия компетен ций		
1	Цели, задачи и история развития климатологии Климатическая система и ее составляющие	5	0,5	0,5	8	Тесты, задания	ОПК-2.1	ОПК-2.1	
2	Астрономические факторы формирования климата	5	0,5	0,5	8	Тесты, задания	ОПК-2.1	ОПК-2.1	
3	Радиационный и тепло- вой балансы подсти-	5	1	1	16	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3	

	лающей поверхности, его составляющие и их распределение по поверхности Земли и							
	внутри года							
4	Факторы общей цирку- ляции атмосферы	5	0,5	0,5	8	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
5	Факторы общей цирку- ляции океана Влияние рельефа на климат	5	0.5	0.5	8	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
6	Пространственное распределение климатических характеристик и климатические классификации.	5	1	1	16	Тесты, задания	ОПК-2.2, ОПК-2.3	ОПК-2.2, ОПК-2.3
	ИТОГО		4	4	64			
	С учетом трудозатрат на подготовку и сдачу зачета						72	

4.3. Содержание разделов дисциплины

4.3.1 Цели, задачи и история развития климатологии Климатическая система и ее составляющие

Определение климатологии и климата, виды климатологии. Цели, задачи и разделы климатологии, ее связь с другими дисциплинами. Общая характеристика климатической системы, основные методы изучения климатологии. История развития климатологии. Международное сотрудничество в области климатологии, включая долгосрочные климатические программы научных исследований и обучения (ВМО, ЮНЕСКО). Общая характеристика климатической системы, компоненты системы, их физические свойства и взаимосвязь. Климатообразующие факторы и их классификация.

4.3.2 Астрономические факторы формирования климата

Астрономические факторы климата, солнечная радиация и солнечная постоянная. Поступление солнечной энергии на Землю. Расчет инсоляции за сутки, полугодия, год. Распределение инсоляции на внешней границе атмосферы по земному шару и ее сезонная изменчивость. Трансформации солнечной энергии в атмосфере Земли, влияние прозрачности атмосферы и облачности на уменьшение солнечной радиации.

4.3.3 Радиационный баланс и тепловой балансы подстилающей поверхности, его составляющие и их распределение по поверхности Земли и внутри года

Радиационный баланс подстилающей поверхности и его составляющие. Суммарная солнечная радиация, ее определение, распределение по поверхности земли и внутри года. Альбедо разных видов поверхностей, измерение и расчет для водной поверхности, гео-

графическое распределение, роль подстилающей поверхности как фактора климата. Поток уходящего длинноволнового излучения, методы определения и пространственные закономерности. Географическое распределение радиационного баланса земной поверхности и его внутригодовая изменчивость. Радиационный баланс системы земля - атмосфера, атмосферы и океана.

Теплообмен между атмосферой и другими звеньями климатической системы. Уравнение теплового баланса подстилающей поверхности и его составляющие. Затраты тепла на испарение, методы их расчета и пространственно-временное распределение. Турбулентный поток тепла от подстилающей поверхности в атмосферу, его определение и распределение по поверхности земли и внутри года. Теплообмен с нижележащими слоями почвы и воды, расчет потоков тепла и их пространственное распределение. Особенности теплообмена между атмосферой и океаном при наличии морских льдов. Сезонная изменчивость составляющих теплового баланса. Уравнение теплового баланса системы Земля – атмосфера. Механизм меридионального переноса энергии в атмосфере и Мировом океане и его географическое представление.

4.3.4 Факторы общей циркуляции атмосферы

Общая циркуляция атмосферы, её климатообразующее значение, виды циркуляции и методы изучения. Основные механизмы и схема общей циркуляции атмосферы. Характерные черты зональной и меридиональной циркуляции в тропосфере и стратосфере в разные сезоны года. Струйные течения, их классификация и основные характеристики. Система циклонов и антициклонов межширотного обмена. Сезонная повторяемость циклонов и антициклонов, поле давления и система воздушных течений.

Центры действия атмосферы и их сезонные свойства. Климатологические фронты: виды и сезонная изменчивость. Пассатная циркуляция в тропической зоне и ячейка Хэдли. Особенности поля давления и циркуляции в тропиках. Внутритропическая зона конвергенции. Тропические циклоны, их свойства и эволюция. Основные свойства муссонной циркуляции. Сезонные закономерности муссонной циркуляции на примерах Азиатского и Африканского муссонов.

4.3.5 Факторы общей циркуляции океана. Влияние рельефа на климат

Общая циркуляция океана и её влияние на климат. Океанические течения, их классификации и свойства основных теплых и холодных океанических течений Мирового океана. Особенности вертикальной циркуляции океана: апвеллинг, подводные вихри и ринги. Конвейер океанических течений Брокера. Температура поверхности океана и ее сезонные изменения. Механизм явления Эль-Ниньо.

Горный климат и горная климатология. Влияние рельефа на приход и расход солнечной радиации. Влияние рельефа на местную и общую циркуляцию атмосферы. Влияние рельефа на температуру почвы и воздуха, влажность воздуха, облачность, осадки, снежный покров. Вертикальная климатическая поясность.

4.3.6 Пространственное распределение климатических характеристик и климатические классификации

Методы пространственного обобщения и климатические карты. Географическое распределение и временная изменчивость температуры воздуха на земном шаре. Температурные экстремумы и аномалии в зональном распределении температуры. Морской и

континентальный климаты, пространственное распределение амплитуд годового хода, индексы континентальности. Влажность воздуха: парциальное давление водяного пара и относительная влажность, их пространственные закономерности в разные сезоны года. Пространственно-временное распределение осадков. Совместное влияние термического режима и режима увлажнения на климат, засухи. Влагооборот в атмосфере земного шара и водные балансы. Перенос водяного пара в атмосфере Земли в разные сезоны года. Пространственно-временное распределение облачности.

Климатические классификации и районирование. Основные задачи, цели, принципы, виды. Ботанические классификации климатов: классификация В.П.Кеппена, ландшафтно-ботаническая классификация Л.С.Берга и другие. Гидрологическая классификация климатов А.И.Воейкова, Пенка и другие. Почвенные классификации В.В.Докучаева, В.Р.Волобуева, Т.Г.Селянинова и другие. Генетические классификации климатов, основанные на особенностях циркуляции (П.И.Броунов, Б.П.Алисов), теплового баланса деятельной поверхности (Будыко-Григорьев) и другие.

Задачи изучения климатов России и мира. Основные характеристики климатических поясов Земли по классификации климатов Б.П.Алисова. Экваториальный и субэкваториальный типы климатов. Типы климатов в тропическом и субтропическом поясе. Характеристики климатов умеренных и арктических широт. Климаты России: климат арктического, субарктического и умеренного поясов, особенности формирования, климатические области.

Понятие о мезо и микроклимате. Мезоклимат леса и города. Микроклиматы водоемов и прибрежных территорий. Роль рельефа в формировании мезо и микроклимата.

4.4. Содержание занятий семинарского типа

Таблица 5. - Содержание практических занятий для очной формы обучения

№ раздела дисциплины	Тематика занятий	Всего часов
1	Задачи климатологии и история ее развития	2
2	Расчет приходящей солнечной радиации на заданной широте	2
3	Методы определения составляющих радиационного и теплового балансов. Их пространственные распределения.	2
4	Основные виды общей циркуляции атмосферы и их свойства	2
5	Общая циркуляция океана, ее закономерности. Численная оценка влияния гор на климатические характеристики.	2
6	Пространственные закономерности климатических характеристик и их экстремумы. Виды климатических классификаций.	4

Таблица 6. - Содержание практических занятий для заочной формы обучения

№ раздела дисциплины	тематика занятии	Всего часов
1	Задачи климатологии и история ее развития	0,5

2	Расчет приходящей солнечной радиации на заданной широте	0,5
3	Методы определения составляющих радиационного и теплового балансов. Их пространственные распределения.	1
4	Основные виды общей циркуляции атмосферы и их свойства	0,5
5	Общая циркуляция океана, ее закономерности. Численная оценка влияния гор на климатические характеристики.	0.5
6	Пространственные закономерности климатических характеристик и их экстремумы. Виды климатических классификаций.	1

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Методические материалы по дисциплине (конспект лекций, методические указания по самостоятельной работе, тесты, презентации по темам дисциплины, практикум размещены на сайте метеофакультета http://metfac.ru/ и в moodle: http://moodle.rshu.ru/course/view.php?id=2

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Учет успеваемости обучающегося по дисциплине осуществляется по 100-балльной шкале. Максимальное количество баллов по дисциплине за один семестр – 100:

- максимальное количество баллов за выполнение всех видов текущего контроля 75;
- максимальное количество баллов за посещение лекционных занятий 10;
- максимальное количество баллов за прохождение промежуточной аттестации 15;
- максимальное количество дополнительных баллов 5

6.1. Текущий контроль

Типовые задания, методика выполнения и критерии оценивания текущего контроля по разделам дисциплины представлены в Фонде оценочных средств по данной дисциплине.

6.2. Промежуточная аттестация

Форма промежуточной аттестации по дисциплине – зачет

Форма проведения экзамена – ответы на вопросы билетов или тестирование

Перечень вопросов к зачету по дисциплине «Климатология»:

ОПК-2.1

- 1). Определение климатологии и климата, виды климатологии.
- 2). Цели, задачи и разделы климатологии, ее связь с другими дисциплинами.
- 3). Основные методы изучения климатологии.
- 4). История развития климатологии: древний мир, средние века, первые приборы, начало метеорологических наблюдений.
- 5). Развитие климатологии в России: начало наблюдений, становление сети регулярных наблюдений, первые климатические обобщения.
- 6). Международное сотрудничество в области климатологии.
- 7). Общая характеристика климатической системы, компоненты системы, их физические свойства и взаимосвязь.

- 8). Климатообразующие факторы и их классификация.
- 9). Астрономические факторы климата: солнечная радиация и солнечная постоянная, поступление солнечной энергии на Землю.
- 10). Расчет инсоляции за сутки, полугодия, год.
- 11). Особенности распределения инсоляции на внешней границе атмосферы по земному шару и ее сезонная изменчивость.
- 12). Трансформации солнечной энергии в атмосфере Земли.

ОПК-2.2, ОПК-2.3

- 13). Радиационный баланс подстилающей поверхности и его составляющие: суммарная солнечная радиация, альбедо разных видов поверхностей, поток уходящего длинноволнового излучения.
- 14). Методы определения и особенности пространственно-временного распределения радиационного баланса и его составляющих.
- 15). Радиационный баланс системы земля атмосфера, атмосферы и океана.
- 16). Уравнение теплового баланса подстилающей поверхности и его составляющие: затраты тепла на испарение, методы определения и общие закономерности по поверхности.
- 16). Уравнение теплового баланса подстилающей поверхности и его составляющие: тур-булентный поток тепла от подстилающей поверхности в атмосферу, методы определения и общие закономерности по поверхности.
- 17) Уравнение теплового баланса подстилающей поверхности и его составляющие: теплообмен с нижележащими слоями почвы и воды, методы определения и общие закономерности по поверхности.
- 18). Уравнение теплового баланса при наличии морских льдов.
- 19). Сезонная изменчивость составляющих теплового баланса.
- 20). Тепловой баланс системы Земля атмосфера, широтное распределение составляющих, диаграмма Селлерса.
- 21). Общая циркуляция атмосферы: виды циркуляции и методы изучения. Основные механизмы и схема общей циркуляции атмосферы.
- 22). Характерные черты зональной и меридиональной циркуляции в тропосфере и стратосфере в разные сезоны года.
- 23). Струйные течения и их основные характеристики.
- 24). Система циклонов и антициклонов межширотного обмена. Сезонная повторяемость циклонов и антициклонов, поле давления и система воздушных течений.
- 25). Центры действия атмосферы и их сезонные свойства. Климатологические фронты: виды и сезонная изменчивость.
- 26). Пассатная циркуляция в тропической зоне и ячейка Хэдли. Особенности поля давления и циркуляции в тропиках. Внутритропическая зона конвергенции.
- 27). Тропические циклоны, их свойства и эволюция. Основные свойства муссонной циркуляции.
- 28). Сезонные закономерности муссонной циркуляции на примерах Азиатского и Африканского муссонов.
- 29). Общая циркуляция океана и её влияние на климат. Океанические течения, их классификации и свойства основных теплых и холодных океанических течений Мирового океана.
- 30). Особенности вертикальной циркуляции океана. Конвейер океанических течений Брокера.
- 31). Температура поверхности океана и ее сезонные изменения. Механизм явления Эль-Ниньо.
- 32). Влияние рельефа на климат. Горный климат и горная климатология. Влияние рельефа на приход и расход солнечной радиации.
- 33) Влияние рельефа на местную и общую циркуляцию атмосферы.

- 34). Влияние рельефа на температуру почвы и воздуха,
- 35). Влияние рельефа на влажность воздуха, облачность, осадки, снежный покров.
- 36). Вертикальная климатическая поясность.
- 37). Пространственное распределение климатических характеристик: методы пространственного обобщения и климатические карты.
- 38). Географическое распределение и временная изменчивость температуры воздуха на земном шаре. Температурные экстремумы и аномалии в зональном распределении температуры.
- 39). Морской и континентальный климаты, пространственное распределение амплитуд годового хода, индексы континентальности.
- 40). Влажность воздуха: парциальное давление водяного пара и относительная влажность, их пространственные закономерности в разные сезоны года.
- 41). Пространственно-временное распределение осадков.
- 42). Совместное влияние термического режима и режима увлажнения на климат, засухи.
- 43). Влагооборот в атмосфере земного шара и водные балансы, облачность.
- 44). Климатические классификации и районирование. Основные задачи, цели, принципы, вилы.
- 45). Ботанические классификации (классификация В.П.Кеппена и другие).
- 46). Гидрологические (классификация климатов А.И.Воейкова и другие).
- 47). Почвенные (В.В.Докучаева, В.Р.Волобуева, Т.Г.Селянинова).
- 48). Генетические классификации, основанные на особенностях циркуляции (Б.П.Алисов) и теплового баланса деятельной поверхности (Будыко-Григорьев).
- 50). Основные характеристики климатических поясов Земли по классификации климатов Б.П.Алисова.
- 51). Экваториальный и субэкваториальный типы климатов. Типы климатов в тропическом и субтропическом поясе.
- 52). Характеристики климатов умеренных и арктических широт.
- 53). Климаты России: климат арктического, субарктического и умеренного поясов, особенности формирования, климатические области.

6.3. Балльно-рейтинговая система оценивания

Таблица 7. - Распределение баллов по видам учебной работы

Вид учебной работы, за которую ставятся баллы	Баллы
Посещение лекционных занятий	10
Практические задания	50
Тесты	20
Промежуточная аттестация	20
ИТОГО	100

Таблица 8 - Распределение дополнительных баллов

Дополнительные баллы	Баллы
(баллы, которые могут быть добавлены до 100)	
Участие в конференции	5
ИТОГО	5

Минимальное количество баллов для допуска до промежуточной аттестации составляет 50 баллов при условии выполнения всех видов текущего контроля.

Таблица 9 - Балльная шкала итоговой оценки на экзамене

Отлично	85-100
Хорошо	65-84
Удовлетворительно	40-64
Неудовлетворительно	0-39

7. Методические рекомендации для обучающихся по освоению дисциплины

Методические рекомендации ко всем видам аудиторных занятий, а также методические рекомендации по организации самостоятельной работы, в том числе по подготовке к текущему контролю и промежуточной аттестации представлены в Практикуме по Климатологии, Часть 1 по освоению дисциплины «Климатология».

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Перечень основной и дополнительной учебной литературы

а) основная литература:

- 1.Лобанов В.А. Лекции по климатологии. Часть 1 Общая климатология. Книга 1 в двух книгах: учебник. СПб: РГГМУ, 2019 378 с. Режим доступа http://elib.rshu.ru/files_books/pdf/img-417170314.pdf
- 2.Лобанов В.А. Лекции по климатологии. Часть 1. Общая климатология. Книга 2 в двух книгах: учебник. СПб: $P\Gamma\Gamma MV$, 2020-378 с. http://elib.rshu.ru/files_books/pdf/img-417170318.pdf
- 3. Лобанов В.А., Смирнов И.А., Шадурский А.Е. Практикум по климатологии. Часть 1. (учебное пособие). Санкт-Петербург, 2011. 144 с. http://elib.rshu.ru/files_books/pdf/img-417170314.pdf

б) дополнительная литература:

- 1. О.А.Дроздов, В.А.Васильев, Н.В.Кобышева, А.Н.Раевский, Л.К.Смекалова, Е.П.Школьный Климатология. Л.: Гидрометеоиздат, 1989. 568 с.
- 2. Б.П.Алисов, Б.В.Полтараус Климатология. Из-во МГУ, 1974. 299 с.
- 3. Л.Т.Матвеев Теория общей циркуляции атмосферы и климата Земли. Л.: Гидрометеоиздат, 1991. 296 с.
- 4. И.Л. Кароль Введение в динамику климата Земли. Л.: Гидрометеоиздат, 1988 216 с.
- 5. А.В. Кислов Климат в прошлом, настоящем и будущем. М.: МАИК «Нау-ка/Интерпериодика», 2001.-352 с.
- 6. С.П. Хромов, М.П. Петросянц Метеорология и климатология. Из-во МГУ, 2001. 528.
 - 8.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
 - 1. СДО MOODLE PГГМУ http://moodle.rshu.ru/course/view.php?id=88
 - 2. Электронный ресурс http://metfac.ru/ Презентации лекций по климатологии (автор В.А.Лобанов)
 - 8.3. Перечень программного обеспечения
 - 1. windows 7 48130165 21.02.2011
 - 2. office 2010 49671955 01.02.2012
 - 8.4. Перечень информационных справочных систем
 - 1. Электронно-библиотечная система ГидроМетеоОнлайн. http://elib.rshu.ru

- 2. Электронно-библиотечная система Знаниум. http://znanium.com
- 3. Специализированный массив базы гидрометеорологических данных ВНИИГ-МИ-МЦД http://meteo.ru/data
- 8.5. Перечень профессиональных баз данных
- 1. Электронно-библиотечная система elibrary;
- 2. База данных издательства SpringerNature;
- 3. База данных Web of Science
- 4. База данных Scopus

9. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение программы соответствует действующим санитарно-техническим и противопожарным правилам и нормам и обеспечивает проведение всех видов лекционных, практических занятий и самостоятельной работы бакалавров.

Учебный процесс обеспечен аудиториями, комплектом лицензионного программного обеспечения, библиотекой РГГМУ.

Учебная аудитория для проведения занятий лекционного типа — укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, презентационной переносной техникой.

Учебная аудитория для проведения занятий практического типа - укомплектована специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, презентационной переносной техникой.

Учебная аудитория для групповых и индивидуальных консультаций - укомплектована специализированной (учебной) мебелью.

Учебная аудитория для текущего контроля и промежуточной аттестации - укомплектована специализированной (учебной) мебелью.

Помещение для самостоятельной работы — укомплектовано специализированной (учебной) мебелью, техническими средствами обучения, служащими для представления учебной информации, оснащено компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечено доступом в электронную информационно-образовательную среду организации.

10. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

При определении формы проведения занятий с обучающимся-инвалидом учитываются рекомендации, содержащиеся в индивидуальной программе реабилитации инвалида, относительно рекомендованных условий и видов труда.

При необходимости для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья создаются специальные рабочие места с учетом нарушенных функций и ограничений жизнедеятельности.

11. Возможность применения электронного обучения и дистанционных образовательных технологий

Дисциплина может реализовываться с применением электронного обучения и дистанционных образовательных технологий