

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРОГРАММА КАНДИДАТСКОГО ЭКЗАМЕНА по научной специальности 1.6.20. Геоинформатика, картография

1. Общие положения

Программа кандидатского экзамена по научной специальности 1.6.20. Геоинформатика, картография предназначена для аспирантов и соискателей федерального государственного бюджетного образовательного учреждения высшего образования «Российский государственный гидрометеорологический университет» (далее – РГГМУ).

Целью кандидатского экзамена является выявление уровня фундаментальных и прикладных знаний в области геоинформатики, а также способности применять эти знания для решения исследовательских и прикладных задач в междисциплинарных контекстах.

Программа составлена в соответствии с приказом Минобрнауки России от 20.10.2021 №951 «Об утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов)» и приказом от 28.03.2014 №247 «Об утверждении Порядка прикрепления лиц для сдачи кандидатских экзаменов, сдачи кандидатских экзаменов и их перечня».

2. Форма проведения кандидатского экзамена

Кандидатский экзамен проводится очно или с применением дистанционных образовательных технологий в соответствии с расписанием, утвержденным председателем экзаменационной комиссии и размещенном на странице официального сайта РГГМУ (https://www.rshu.ru/university/postgrad/pricrep.php). Форма проведения кандидатского экзамена – устная.

Продолжительность кандидатского экзамена 60 минут, в т.ч. 30 минут на подготовку к ответу и 30 минут на ответ.

3. Содержание кандидатского экзамена

- 1. Общие сведения о геоинформатике. Понятие о геоинформатике, как о науке, технологии И производстве. Взаимосвязи с картографией И другими отраслями геоинформационного (дисциплинами, предметами). Принципиальные отличия традиционного картографирования. картографирования OT Технологическая геоинформационной обработки данных. Критерии качества цифровых карт для ГИС.
- Модели представления пространственной информации. Стандарты хранения и 2. обмена пространственными данными. Понятие о пространственном объекте и его типы. Геометрические примитивы. Идентификатор. Атрибуты. Понятие тематического слоя в геоинформационной системе. Системы координат и проекции в ГИС. Геометрические характеристики пространственных объектов. Методы оцифровки пространственной информации. Сравнительный анализ методов ввода графической и атрибутивной информации ГИС. Базовая технологическая схема геоинформационного картографирования. Методы получения пространственной информации. Елиное геоинформационное пространство.
- 3. Пространственные базы данных и знаний. Понятие базы данных и знаний. Виды представления информации в БД. Базы данных и системы управления базами данных в ГИС. Основные требования, предъявляемые к базам данных и знаний. Этапы проектирования географических баз данных. Понятие модели хранения данных. Мультимодельные базы

данных. Распределённые хранение и обработка данных. Интегрированные базы данных. Объектно-ориентированные структуры в геоинформационных системах и системах управления базами данных. Задачи, решаемые с помощью баз данных (БД) в картографии и геоинформатике. Концепции ВАЅЕ и АСІD. Понятие NoSQL. Языки поиска и управления данными в системах управления базами данных. Язык запросов SQL, диалекты. Агрегирующие запросы. Формирование вывода. Объединение таблиц. Запросы на добавление, изменение, удаление данных. Транзакции. Сложность выполнения запросов. Индексы. Принципы распределенного хранения в базах данных. Распределенные файловые системы. Принципы распределенной обработки данных.

3

- 4. Пространственный анализа. Понятие об анализе географической информации средствами ГИС. Основные операции пространственного анализа. Проблема генерализации в ГИС. Мультимасштабность в ГИС. Задача классификации геоданных. Виды методов классификации. Кластеризация. Общие аналитические операции в ГИС и методы пространственно-временного моделирования. Картометрические функции. Анализ растровых изображений. Построение буферных зон. Оверлейные операции. Сетевой анализ. Агрегирование данных. Районирование.
- 5. Пространственно-временное моделирование. Детерминистические методы пространственной интерполяции. Триангуляция Делоне, полигоны Вороного и Тиссена. Линейные интерполяторы. Полиномиальные методы. Основные понятия и элементы геостатистики. Геостатистические методы пространственной интерполяции. Пространственные переменные. Пространственная непрерывность и стационарность. Эргодичность. Вариограмма. Моделирование вариограммы. Кригинг и базовые модели геостатистики. Математические алгоритмы, используемые для создания ЦМР. Особенности пространственных данных при их обработке и использовании с помощью технологий искусственного интеллекта. Особенности разметки пространственных данных. Методы и алгоритмы построения геопространственных математических моделей с помощью машинного обучения.
- 6. Создание и применение геоинформационных систем. Методы организации, ведения, редактирования и контроля картографических и геоинформационных работ. Приемы и технологии оценки результатов деятельности по решению профессиональных задач.
- 7. Методы дистанционного зондирования. Получение изображений кадровыми и сканерными цифровыми съёмочными системами, геометрические и радиометрические свойства цифровых снимков. Теорема Котельникова. Импульсный отклик системы формирования изображения. Назначение трансформирования. Прямое и обратное цифровое трансформирование. Трансформирование космических снимков (использование полиномов, прямое линейное преобразование (DLT), использование RPC). Использование функции взаимной корреляции и метода наименьших квадратов для поиска соответственных точек. Сущность ортотрансформирования цифровых снимков.
- 8. Понятие инфраструктуры пространственных данных, ее компоненты. Разработка теории и методов создания картографических баз данных и математико-картографического моделирования, создания картографических моделей как физических явлений. Развитие методов геосистемного пространственно-временного моделирования и его графического представления посредством картографической символики. Нормализация терминологии геоинформатики.

- 1. Создание и развитие геоинформационных систем в науках о Земле.
- 2. Геоинформационное пространство.
- 3. Информационные процессы.
- 4. Системный подход к организации информационных процессов.
- 5. Организация и модели процессов сбора, передачи, обработки, фиксации, накопления, представления геоинформации и знаний.
- 6. Геоинформационные системы и их место в проблеме изучения природных и социально-экономических геосистем, их взаимодействия и развития посредством компьютерного моделирования и анализа геопространственных данных
- 7. Понятие модели. Принципы моделируемости. Объектно-ориентированные модели. Открытые модели.
- 8. Анализ проблемных ситуаций, для которых создается геоинформационная система. Этапы системного подхода к разрешению проблемной ситуаций
 - 9. Представление геопространственных данных.
- 10. Большие данные в задачах геоинформационного и картографического моделирования. Разнородные, разномасштабные и разновременные пространственные данные, вопросы их интеграции и совместного использования. Применение искусственного интеллекта для обработки пространственных данных.
- 11. Математические модели физических полей Земли. Модели природных образований и явлений. Моделирование многомерных систем и сигналов
 - 12. Теоретические основы информационных процессов.
- 13. Методы космических наблюдений для определения фундаментальных параметров и физических полей Земли.
 - 14. Наземные, полевые методы сбора геоданных о местности.
 - 15. Статистический анализ случайных величин и процессов.
 - 16. Базы данных основа информационных технологий.
- 17. Базы знаний и экспертные геоинформационные системы для принятия решений в области проблем управления территориями.
- 18. Геоинформационные инфраструктуры, методы и технологии хранения и использования геоинформации на основе распределенных баз данных и знаний.
- 19. Модели данных как информационная основа БД. Проектирование и моделирование логической структуры БД. Технология физического хранение и доступа к данным.
- 20. Геоинформационное картографирование и другие виды геомоделирования, системный анализ многоуровневой и разнородной геоинформации.
 - 21. Компьютерные системы коммуникаций.
- 22. Общая характеристика ГИС. Принципы построения моделей данных в ГИС. Методы и технологии моделирования в ГИС.
- 23. Техническое обеспечение ГИС. Инструментально-программные средства ГИС. Прикладное программное обеспечение ГИС. Информационное обеспечение ГИС.
 - 24. Методы и средства защиты информации в ГИС.
 - 25. Поддержка принятия решения в ГИС-технологиях.
 - 26. Приложения и применение ГИС.
- 27. Геоинформационные инфраструктуры, методы и технологии хранения и использования геоинформации на основе распределенных баз данных и знаний.

5. Список литературы, рекомендуемый для подготовки к кандидатскому экзамену

- 1. Истомин Е.П., Петров Я.А. [и др.]. Геоинформационное управление развитием природно-технических систем: монография. Санкт-Петербург: ЮПИ, 2022. 420 с. 300 экз. ISBN 978-5-4386-2211-6.
- 2. Istomin E., Mikheev V., Petrov Y., Prisyazhnyuk S., Sokolov A. Geospatial Aspects of Managing the Development of Complex Systems. Cham: Springer, 2023. 413 p. (Earth and Environmental Sciences Library). ISSN 2730-6674. ISBN 978-3-031-33165-7. DOI: https://doi.org/10.1007/978-3-031-33166-4.
- 3. Байков Е.А., Истомин Е.П., Михеев В.Л., Соколов А.Г., Петров Я.А. Маркетинг в геопространстве. Том 1. Основы маркетинга в геопространстве: учебник. СПб.: ООО «Свое издательство», 2023. 346 с.
- 4. Байков Е.А., Истомин Е.П., Михеев В.Л., Соколов А.Г., Петров Я.А. Маркетинг в геопространстве. Том 2. Прикладные аспекты маркетинга в геопространстве: учебник. СПб.: ООО «Свое издательство», 2023. 334 с.
- 5. Раклов В.П. Картография и ГИС. 3-е изд., стер. Москва: ИНФРА-М, 2021. 215 с. URL: https://znanium.com/catalog/product/1407936 (дата обращения: 21.06.2025).
- 6. Зотов Р.В. Геоинформатика. Омск: СибАДИ, 2020. 153 с. URL: https://e.lanbook.com/book/163766.
- 7. Лурье И.К. Геоинформационное картографирование. Методы геоинформатики и цифровой обработки космических снимков. 3-е изд. М.: КДУ, 2016. 423 с.
- 8. Молочко А.В., Хворостухин Д.П. Геоинформационное картографирование в экономической и социальной географии. М.: ИНФРА-М, 2020. 127 с. URL: https://znanium.com/catalog/product/1068151.
- 9. Гиниятуллина О.Л., Хорошева Т.А. Геоинформационные системы. Кемерово: KeмГУ, 2018. - 122 с. - URL: https://e.lanbook.com/book/120040.
- 10. Осипов Д.Л. Технологии проектирования баз данных. М.: ДМК Пресс, 2019. 498 с. URL: https://e.lanbook.com/book/131692.
- 11. Григорьев Ю.А., Плутенко А.Д., Плужникова О.Ю. Реляционные базы данных и системы NoSQL. Благовещенск: АмГУ, 2018. 424 с. URL: https://e.lanbook.com/book/156492.
- 12. Чистякова М.А., Иванова И.А., Котилевец И.Д. Проектирование и эксплуатация баз данных. М.: РТУ МИРЭА, 2021. 112 с. URL: https://e.lanbook.com/book/176572.
- 13. Матушкин А.С. Цифровая картография. Киров: ВятГУ, 2017. 121 с. URL: https://e.lanbook.com/book/164419 (дата обращения: 21.06.2025).
 - 14. Журнал «Геоинформатика».
 - 15. Журнал «Информация и космос».

Разработчик программы:

- 1. Истомин Евгений Петрович, директор института Информационных систем и геотехнологий, доктор технических наук, профессор.
- 2. Петров Ярослав Андреевич, доцент кафедры прикладной информатики, кандидат технических наук, доцент.